期刊论文详细信息
BMC Evolutionary Biology
Demasculinization of the Anopheles gambiae X chromosome
Nikolai Windbichler2  Andrea Crisanti2  Philippos-Aris Papathanos3  Amy Lynd1  Antonio M Mendes2  Gareth J Lycett1  Kalle Magnusson2 
[1] Liverpool School of Tropical Medicine, Pembroke Place, London, L3 5QA, UK;Imperial College London, Department of Life Sciences, Imperial College Road, London, SW7 2AZ, UK;Division of Biology; California Institute of Technology, Pasadena, CA, USA
关键词: dosage compensation;    sexual antagonism;    germline x-chromosome inactivation;    demasculinization;    Anopheles gambiae;   
Others  :  1141170
DOI  :  10.1186/1471-2148-12-69
 received in 2011-12-13, accepted in 2012-05-18,  发布年份 2012
PDF
【 摘 要 】

Background

In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z). Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles.

Results

We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline.

Conclusion

The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

【 授权许可】

   
2012 Magnusson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150326012826880.pdf 2435KB PDF download
Figure 5 . 51KB Image download
Figure 4 . 68KB Image download
Figure 3 . 75KB Image download
Figure 2 . 99KB Image download
78KB Image download
【 图 表 】

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]Prince EG, Kirkland D, Demuth JP: Hyperexpression of the X chromosome in both sexes results in extensive female bias of X-linked genes in the flour beetle. Genome Biol Evol 2010, 2:336-346.
  • [2]Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL: Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 2003, 300(5626):1742-1745.
  • [3]Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, Andrews J, Eastman S, Oliver B: Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 2003, 299(5607):697-700.
  • [4]Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, et al.: A global profile of germline gene expression in C. elegans. Mol Cell 2000, 6(3):605-616.
  • [5]Storchova R, Divina P: Nonrandom representation of sex-biased genes on chicken Z chromosome. J Mol Evol 2006, 63(5):676-681.
  • [6]Lebo MS, Sanders LE, Sun F, Arbeitman MN: Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis. BMC Genomics 2009, 10:80. BioMed Central Full Text
  • [7]Chang PL, Dunham JP, Nuzhdin SV, Arbeitman MN: Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC Genomics 2011, 12:364. BioMed Central Full Text
  • [8]Reinke V, Gil IS, Ward S, Kazmer K: Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2004, 131(2):311-323.
  • [9]Wang PJ, McCarrey JR, Yang F, Page DC: An abundance of X-linked genes expressed in spermatogonia. Nat Genet 2001, 27(4):422-426.
  • [10]Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD: The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 2004, 36(6):642-646.
  • [11]Sturgill D, Zhang Y, Parisi M, Oliver B: Demasculinization of X chromosomes in the Drosophila genus. Nature 2007, 450(7167):238-241.
  • [12]Wu CI, Xu EY: Sexual antagonism and X inactivation–the SAXI hypothesis. Trends Genet 2003, 19(5):243-247.
  • [13]Betran E, Thornton K, Long M: Retroposed new genes out of the X in Drosophila. Genome Res 2002, 12(12):1854-1859.
  • [14]Vicoso B, Charlesworth B: The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation? J Mol Evo 2009, 68(5):576-583.
  • [15]Rice WR: Sex chromosomes and the evolution of sexual dimorphism. Evolution 2002, 1984:735-742.
  • [16]Richler C, Soreq H, Wahrman J: X inactivation in mammalian testis is correlated with inactive X-specific transcription. Nat Genet 1992, 2(3):192-195.
  • [17]Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, Villeneuve AM, Reinke V: X-chromosome silencing in the germline of C. elegans. Development 2002, 129(2):479-492.
  • [18]Hense W, Baines JF, Parsch J: X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol 2007, 5(10):e273.
  • [19]Kemkemer C, Hense W, Parsch J: Fine-scale analysis of X chromosome inactivation in the male germ line of Drosophila melanogaster. Mol Biol Evol 2011, 28(5):1561-1563.
  • [20]Mikhaylova LM, Nurminsky DI: Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome. BMC Biol 2011, 9:29. BioMed Central Full Text
  • [21]Meiklejohn CD, Landeen EL, Cook JM, Kingan SB, Presgraves DC: Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol 2011, 9(8):e1001126.
  • [22]Connallon T, Knowles LL: Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet 2005, 21(9):495-499.
  • [23]Marin I, Siegal ML, Baker BS: The evolution of dosage-compensation mechanisms. Bioessays 2000, 22(12):1106-1114.
  • [24]Vibranovski MD, Lopes HF, Karr TL, Long M: Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 2009, 5(11):e1000731.
  • [25]Deng X, Hiatt JB, Nguyen DK, Ercan S, Sturgill D, Hillier LW, Schlesinger F, Davis CA, Reinke VJ, Gingeras TR, et al.: Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 2011, 43(12):1179-1185.
  • [26]Hahn MW, Lanzaro GC: Female-biased gene expression in the malaria mosquito Anopheles gambiae. Curr Biol 2005, 15(6):R192-193.
  • [27]Gurbich TA, Bachtrog D: Gene content evolution on the X chromosome. Curr Opin Genet Dev 2008, 18(6):493-498.
  • [28]Baker DA, Nolan T, Fischer B, Pinder A, Crisanti A, Russell S: A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector. Anopheles gambiae. BMC Genomics 2011, 12:296.
  • [29]Baker DA, Russell S: Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae. Genetics 2011, 189(3):1117-1120.
  • [30]Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JM: Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 2005, 14(4):365-373.
  • [31]Magnusson K, Mendes AM, Windbichler N, Papathanos PA, Nolan T, Dottorini T, Rizzi E, Christophides GK, Crisanti A: Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae. PLoS One 2011, 6(6):e21572.
  • [32]Catteruccia F, Benton JP, Crisanti A: An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 2005, 23(11):1414-1417.
  • [33]Windbichler N, Papathanos PA, Crisanti A: Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet 2008, 4(12):e1000291.
  • [34]Lycett GJ, Amenya D, Lynd A: The Anopheles gambiae alpha-tubulin-1b promoter directs neuronal, testes and developing imaginal tissue specific expression and is a sensitive enhancer detector. Insect Mol Biol 2011.
  • [35]Krzywinska E, Krzywinski J: Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes. BMC Genomics 2009, 10:300. BioMed Central Full Text
  • [36]Papathanos PA, Windbichler N, Menichelli M, Burt A, Crisanti A: The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Mol Biol 2009, 10:65. BioMed Central Full Text
  • [37]Schmid KJ, Nigro L, Aquadro CF, Tautz D: Large number of replacement polymorphisms in rapidly evolving genes of Drosophila. Implications for genome-wide surveys of DNA polymorphism. Genetics 1999, 153(4):1717-1729.
  • [38]Singh ND, Davis JC, Petrov DA: X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 2005, 171(1):145-155.
  • [39]Toups MA, Hahn MW: Retrogenes Reveal the Direction of Sex-chromosome Evolution in Mosquitoes. Genetics 2010.
  • [40]Barreau C, Benson E, Gudmannsdottir E, Newton F, White-Cooper H: Post-meiotic transcription in Drosophila testes. Development 2008, 135(11):1897-1902.
  • [41]Smith RC, Walter MF, Hice RH, O'Brochta DA, Atkinson PW: Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol 2007, 16(1):61-71.
  • [42]Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JM, James AA: Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 2006, 15(1):1-12.
  • [43]Townsend JP, Hartl DL: Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biol 2002, 3(12):0071.
  • [44]Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22(22):2825-2827.
  • [45]Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E, et al.: VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 2009, 37(Database issue):583-587.
  • [46]Hambuch TM, Parsch J: Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics 2005, 170(4):1691-1700.
  • [47]Wright F: The 'effective number of codons' used in a gene. Gene 1990, 87(1):23-29.
  • [48]Ikemura T: Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 1981, 151(3):389-409.
  • [49]Handler AM, Harrell RA: Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 1999, 8(4):449-457.
  文献评价指标  
  下载次数:28次 浏览次数:24次