期刊论文详细信息
BMC Microbiology
Lactobacillus ruminis strains cluster according to their mammalian gut source
Paul W O’Toole2  Reynolds Paul Ross1  Denise B Lynch3  Hugh Michael B Harris3  Michelle M O’ Donnell3 
[1] College of Science, Engineering and Food Science (SEFS), University College Cork, Cork, Ireland;School of Microbiology, Food Science Building, University College Cork, Cork, Ireland;School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
关键词: RNA-seq;    Prebiotics;    Motility;    Lactobacillus;    Lactobacillus ruminis;   
Others  :  1206338
DOI  :  10.1186/s12866-015-0403-y
 received in 2014-11-21, accepted in 2015-03-11,  发布年份 2015
PDF
【 摘 要 】

Background

Lactobacillus ruminis is a motile Lactobacillus that is autochthonous to the human gut, and which may also be isolated from other mammals. Detailed characterization of L. ruminis has previously been restricted to strains of human and bovine origin. We therefore sought to expand our bio-bank of strains to identify and characterise isolates of porcine and equine origin by comparative genomics.

Results

We isolated five strains from the faeces of horses and two strains from pigs, and compared their motility, biochemistry and genetic relatedness to six human isolates and three bovine isolates including the type strain 27780T. Multilocus sequence typing analysis based on concatenated sequence data for six individual loci separated the 16 L. ruminis strains into three clades concordant with human, bovine or porcine, and equine sources. Sequencing the genomes of four additional strains of human, bovine, equine and porcine origin revealed a high level of genome synteny, independent of the source animal. Analysis of carbohydrate utilization, stress survival and technological robustness in a combined panel of sixteen L. ruminis isolates identified strains with optimal survival characteristics suitable for future investigation as candidate probiotics. Under laboratory conditions, six human isolates of L. ruminis tested were aflagellate and non-motile, whereas all 10 strains of bovine, equine and porcine origin were motile. Interestingly the equine and porcine strains were hyper-flagellated compared to bovine isolates, and this hyper-flagellate phenotype correlated with the ability to swarm on solid medium containing up to 1.8% agar. Analysis by RNA sequencing and qRT-PCR identified genes for the biosynthesis of flagella, genes for carbohydrate metabolism and genes of unknown function that were differentially expressed in swarming cells of an equine isolate of L. ruminis.

Conclusions

We suggest that Lactobacillus ruminis isolates have potential to be used in the functional food industry. We have also identified a MLST scheme able to distinguish between strains of L. ruminis of different origin. Genes for non-digestible oligosaccharide metabolism were identified with a putative role in swarming behaviour.

【 授权许可】

   
2015 O' Donnell et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150528020153534.pdf 1424KB PDF download
20150416110057723.pdf 1719KB PDF download
Figure 3. 11KB Image download
Figure 2. 97KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, De Vos WM. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol. 2002; 68(1):114-23.
  • [2]Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010; 103(02):227-34.
  • [3]Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol. 2001; 2(2):43-53.
  • [4]Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P et al.. Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol. 2007; 59(1):127-37.
  • [5]Sharpe ME, Latham MJ, Garvie EI, Zirngibl J, Kandler O. Two new species of Lactobacillus isolated from the bovine rumen, Lactobacillus ruminis sp.nov. and Lactobacillus vitulinus sp.nov. J Gen Microbiol. 1973; 77(1):37-49.
  • [6]Stewart CS, Fonty G, Gouet P. The establishment of rumen microbial communities. Anim Feed Sci Technol. 1988; 21(2–4):69-97.
  • [7]Greetham HL, Giffard C, Hutson RA, Collins MD, Gibson GR. Bacteriology of the Labrador dog gut: a cultural and genotypic approach. J Appl Microbiol. 2002; 93(4):640-6.
  • [8]Al Jassim RA. Lactobacillus ruminis is a predominant lactic acid producing bacterium in the caecum and rectum of the pig. Lett Appl Microbiol. 2003; 37(3):213-7.
  • [9]Desai AR, Musil KM, Carr AP, Hill JE. Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Vet Microbiol. 2009; 137(1–2):120-8.
  • [10]Mathiesen SD, Orpin CG, Greenwood Y, Blix AS. Seasonal changes in the cecal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol. 1987; 53(1):114-8.
  • [11]Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Veterinary Microbiology 2009, In Press, Corrected Proof.
  • [12]Vörös A. Diet Related Changes in the Gastrointestinal Microbiota of Horses. Masters. Swedish University of Agricultural Sciences, Uppsala; 2008.
  • [13]Willing B, Vörös A, Roos S, Jones C, Jansson A, Lindberg JE. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet J. 2009; 41(9):908-14.
  • [14]Endo A, Futagawa-Endo Y, Dicks LMT. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe. 2010; 16(6):590-6.
  • [15]Kovalenko NK, Golovach TN, Kvasnikov EI. Lactic bacteria in the digestive tract of poultry. Mikrobiologiia. 1989; 58(1):137-43.
  • [16]Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol, In Press, Accepted Manuscript.
  • [17]Lerche M, Reuter G. Isolierung und Differenzierung anaerober Lactobacilleae aus Darm erwachsener Menschen (Beitrag zum Lactobacillus bifidus Problem). Zentralbl Bakteriol. 1961; 182:324.
  • [18]Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol. 2000; 66(6):2578-88.
  • [19]Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K et al.. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PLoS ONE. 2012; 7(7):e40592.
  • [20]Taweechotipatr M, Iyer C, Spinler JK, Versalovic J, Tumwasorn S. Lactobacillus saerimneri and Lactobacillus ruminis: novel human-derived probiotic strains with immunomodulatory activities. FEMS Microbiol Lett. 2009; 293(1):65-72.
  • [21]Yun J-H, Yim D-S, Kang J-Y, Kang B-Y, Shin E-A, Chung M-J et al.. Identification of Lactobacillus ruminus SPM0211 isolated from healthy Koreans and its antimicrobial activity against some pathogens. Arch Pharm Res. 2005; 28(6):660-6.
  • [22]O’Donnell MM, O’Toole PW, Ross RP. Catabolic flexibility of mammalian-associated lactobacilli. Microb Cell Factories. 2013; 12:48. BioMed Central Full Text
  • [23]O’Donnell MM, Forde BM, Neville BA, Ross RP, O’Toole PW. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb Cell Fact. 2011; 10 Suppl 1:S12. BioMed Central Full Text
  • [24]Forde BM, Neville BA, O’ Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A et al.. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact. 2011; 10 Suppl 1:S13. BioMed Central Full Text
  • [25]De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM. Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J. 2006; 16(9):1018-28.
  • [26]Dunne C, Murphy L, Flynn S, O’ Mahony L, O’ Halloran S, Feeney M et al. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications. Edited by Wil Konings, Otto Kuipers, O.P. Kuipers, Veld JHJHit: Springer Netherlands; 1999: 279-92.
  • [27]Hänninen ML. Sensitivity of Helicobacter pylori to different bile salts. Eur J Clin Microbiol Infect Dis. 1991; 10(6):515-8.
  • [28]Bennedsen M, Stuer-Lauridsen B, Danielsen M, Johansen E. Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl Environ Microbiol. 2011; 77(8):2785-7.
  • [29]Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005; 98(2):211-7.
  • [30]Yoon KY, Woodams EE, Hang YD. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour Technol. 2006; 97(12):1427-30.
  • [31]Champagne CP, Gardner NJ, Roy D. Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr. 2005; 45(1):61-84.
  • [32]Harrison AP, Hansen PA. A motile Lactobacillus from the cecal feces of turkeys. J Bacteriol. 1950; 59(3):444.
  • [33]Deibel RH, Niven CF. Microbiology of meat curing: I. The occurrence and significance of a motile microorganism of the genus Lactobacillus in ham curing brines. Appl Microbiol. 1958; 6(5):323.
  • [34]Nielsen DS, Schillinger U, Franz CMAP, Bresciani J, Amoa-Awua W, Holzapfel WH et al.. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol. 2007; 57(7):1468-72.
  • [35]Chao S-H, Tomii Y, Sasamoto M, Fujimoto J, Tsai Y-C, Watanabe K. Lactobacillus capillatus sp. nov., a motile bacterium isolated from stinky tofu brine. Int J Syst Evol Microbiol. 2008; 58(11):2555-9.
  • [36]Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al.. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001; 410(6832):1099-103.
  • [37]Lawley B, Sims IM, Tannock GW. Whole-Transcriptome Shotgun Sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley β-Glucan. Appl Environ Microbiol. 2013; 79(18):5661-9.
  • [38]Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003; 57(1):249-73.
  • [39]Rather PN. Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol. 2005; 7(8):1065-73.
  • [40]Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J et al.. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008; 16(10):496-506.
  • [41]Partridge JD, Harshey RM. Swarming: flexible roaming plans. J Bacteriol. 2013; 195(5):909-18.
  • [42]Attmannspacher U, Scharf BE, Harshey RM. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol Microbiol. 2008; 68(2):328-41.
  • [43]Sharma M, Anand SK. Swarming: a coordinated bacterial activity. Curr Sci. 2002; 83:707-15.
  • [44]Niu C, Graves JD, Mokuolu FO, Gilbert SE, Gilbert ES. Enhanced swarming of bacteria on agar plates containing the surfactant Tween 80. J Microbiol Methods. 2005; 62(1):129-32.
  • [45]Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol. 2011; 4(3):368-74.
  • [46]Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci. 2010; 107(8):3776-81.
  • [47]Başyiğit Kılıç G, Kuleaşan H, Sömer VF, Akpınar D. Determining potential probiotic properties of human originated Lactobacillus plantarum strains. Biotechnol Bioprocess Eng. 2013; 18(3):479-85.
  • [48]Delgado S, Suarez A, Mayo B. Dominant cultivable Lactobacillus species from the feces of healthy adults in northern Spain. Int Microbiol. 2007; 10(2):141-5.
  • [49]Delgado S, O’Sullivan E, Fitzgerald G, Mayo B. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci. 2007; 72(8):M310-5.
  • [50]Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004; 12(9):412-6.
  • [51]Danielsen M, Wind A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol. 2003; 82(1):1-11.
  • [52]Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2012.2740.
  • [53]Yunis AA. Chloramphenicol toxicity: 25 years of research. Am J Med. 1989; 87(3N):44N-8.
  • [54]O’ Donnell MM, O’ Toole PW, Ross RP. Catabolic flexibility of mammalian-associated lactobacilli. Microb Cell Fact. 2013; 12(1):48. BioMed Central Full Text
  • [55]De Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics - compensation for lactase insufficiency. Am J Clin Nutr. 2001; 73(2):421s-9.
  • [56]de las Rivas B, Marcobal A, Munoz R. Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology. 2006; 152(1):85-93.
  • [57]Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol. 2007; 73(20):6601-11.
  • [58]Tanigawa K, Watanabe K. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiology. 2011; 157(3):727-38.
  • [59]Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev. 2004; 28(3):261-89.
  • [60]Kim W, Surette MG. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol. 2004; 54(3):702-14.
  • [61]Lux R, Munasinghe VRN, Castellano F, Lengeler JW, Corrie JET, Khan S. Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell. 1999; 10(4):1133-46.
  • [62]De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Microbiol. 1960; 23(1):130-5.
  • [63]O’Donnell MM, Harris HMB, Jeffery IB, Claesson MJ, Younge B, O’Toole PW et al.. The core faecal bacterial microbiome of Irish Thoroughbred racehorses. Letts App Microbiol. 2013; 57:492-501.
  • [64]De Palencia PF, López P, Corbí AL, Peláez C, Requena T. Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol. 2008; 227(5):1475-84.
  • [65]Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium series. 1999; 1999:95-8.
  • [66]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-9.
  • [67]Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23(2):254-67.
  • [68]Jolley KA, Feil EJ, Chan MS, Maiden MCJ. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001; 17(12):1230-1.
  • [69]Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16(2):111-20.
  • [70]Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006; 34(19):5623-30.
  • [71]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10.
  • [72]Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. ACT: the Artemis comparison tool. Bioinformatics. 2005; 21(16):3422-3.
  • [73]Alikhan N-F, Petty NK, Zakour NLB, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011; 12(1):402. BioMed Central Full Text
  • [74]Higgins DG, Thompson JD, Gibson TJ, Russell FD. Using CLUSTAL for multiple sequence alignments. In: Methods in Enzymology. Edited by Sidney P. Colowick, Kaplan NO, vol. Volume 266: Academic Press; 1996: 383-402.
  • [75]Creevey C, McInerney JO. Clann: investigating phylogenetic information through supertree analyses. Bioinformatics. 2005; 21(3):390-2.
  • [76]Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible read trimming tool for illumina NGS data. Bioinformatics. 2014: btu170
  • [77]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M et al.. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 2012; 40(W1):W622-7.
  • [78]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-9.
  • [79]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
  • [80]Anders S. HTSeq: Analysing high-throughput sequencing data with Python. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. 2010.
  • [81]Anders S. Analysing RNA-Seq data with the “DESeq” package. Mol Biol. 2010:1-17.
  文献评价指标  
  下载次数:45次 浏览次数:15次