期刊论文详细信息
BMC Genomics
Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte
Vicente Larraga4  Maribel Jiménez1  Ricardo Molina1  Marina Postigo2  Manuel J Gómez3  Ana Alonso4  Pedro J Alcolea4 
[1] Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo s/n, 28220 Majadahonda, Spain;Unidad de Secuenciación y Bioinformática, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” and Consejo Superior de Investigaciones Científicas, Ctra. Ajalvir Km 4. 28850, Torrejón de Ardoz, Spain;Current address: Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain;Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Calle Ramiro de Maeztu, 9. 28040 Madrid, Spain
关键词: Gene expression profiling;    Promastigote axenic culture;    Amastigotes;    Promastigotes;    Phlebotomus perniciosus;    Leishmania infantum;   
Others  :  1139154
DOI  :  10.1186/1471-2164-15-849
 received in 2014-01-09, accepted in 2014-09-19,  发布年份 2014
PDF
【 摘 要 】

Background

Leishmania infantum is the etiological agent of zoonotical visceral leishmaniasis in the Mediterranean basin. A recent outbreak in humans has been recently reported in central Spain. Leishmania spp. parasites are transmitted to the mammalian host by the bite of sand flies. The primary vector of L. infantum in Spain is Phlebotomus perniciosus. For decades, research on these parasites has involved the axenic culture model of the promastigote stage including gene expression profiling studies performed in the post-genome era. Unlike the controversial axenic culturing of amastigotes, promastigote cultures are generally accepted and used, although with the precaution of avoiding excessive culture passage.

The primary objective of this differentiation study is to compare the gene expression profiles of promastigotes isolated from the foregut of the sand fly and amastigotes. For this purpose, P. perniciosus sand flies were infected with L. infantum and differentiated promastigotes were extracted by dissection of the foreguts. Shotgun DNA microarray hybridization analyses allowed for transcriptome comparison of these promastigotes with amastigotes obtained by infection of the U937 cell line. The results have been compared with those described in published expression analyses using axenic promastigotes.

Results

A total of 277 up-regulated genes were found through this hybridization experiment. The comparison of these particular results with published gene expression profile analyses performed using the same experimental procedure to study cultured promastigotes in stationary phase versus amastigotes revealed considerable differences (approximately 95% of the up-regulated genes were different). We found that the up-regulation rate is lower in amastigotes than in sand fly-derived promastigotes, which is in agreement with the over-expression of genes involved in gene expression regulation and signaling in those promastigote populations.

Conclusions

The up-regulation rate is lower in intracellular amastigotes than in promastigotes obtained from the sand fly gut. This was also reported by us using the promastigote culture model and is an evidence for the hypothesis of promastigote preadaptation towards life in the intracellular environment. Regarding transcript abundance, the set of differentially regulated genes is notably different when using promastigotes from the sand fly foregut instead of axenic cultures.

【 授权许可】

   
2014 Alcolea et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321053115466.pdf 1619KB PDF download
Figure 5. 29KB Image download
Figure 4. 143KB Image download
Figure 3. 37KB Image download
Figure 2. 78KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Desjeux P: Leishmaniasis. Public health aspects and control. Clin Dermatol 1996, 14(5):417-423.
  • [2]WHO: Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases. Geneva: WHO Technical Report Serie; 2010.
  • [3]Pasquau F, Ena J, Sanchez R, Cuadrado JM, Amador C, Flores J, Benito C, Redondo C, Lacruz J, Abril V, Onofre J: Leishmaniasis as an opportunistic infection in HIV-infected patients: determinants of relapse and mortality in a collaborative study of 228 episodes in a Mediterreanean region. Eur J Clin Microbiol Infect Dis 2005, 24(6):411-418.
  • [4]Cruz I, Nieto J, Moreno J, Canavate C, Desjeux P, Alvar J: Leishmania/HIV co-infections in the second decade. Indian J Med Res 2006, 123(3):357-388.
  • [5]Arce A, Estirado A, Ordobas M, Sevilla S, Garcia N, Moratilla L, de la Fuente S, Martinez AM, Perez AM, Aranguez E, Iriso A, Sevillano O, Bernal J, Vilas F: Re-emergence of leishmaniasis in Spain: community outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill 2013, 18(30):20546.
  • [6]Molina R, Jimenez MI, Cruz I, Iriso A, Martin-Martin I, Sevillano O, Melero S, Bernal J: The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet Parasitol 2012, 190(1–2):268-271.
  • [7]Lucientes-Curdi J, Benito-de-Martin MI, Castillo-Hernandez JA, Orcajo-Teresa J: Seasonal dynamics of Larroussius species in Aragon (N.E. Spain). Parassitologia 1991, 33(Suppl):381-386.
  • [8]Killick-Kendrick R: The biology and control of phlebotomine sand flies. Clin Dermatol 1999, 17(3):279-289.
  • [9]Neal RA, Miles RA: Heated blood agar medium for the growth of Trypanosoma cruzi and some species of Leishmania. Nature 1963, 198:210-211.
  • [10]Lemma A, Schiller EL: Extracellular cultivation of the leishmanial bodies of species belonging to the protozoan genus leishmania. Exp Parasitol 1964, 15:503-513.
  • [11]Steiger RF, Steiger E: A defined medium for cultivating Leishmania donovani and L. braziliensis. J Parasitol 1976, 62(6):1010-1011.
  • [12]Berens RL, Marr JJ: An easily prepared defined medium for cultivation of Leishmania donovani promastigotes. J Parasitol 1978, 64(1):160.
  • [13]Zilberstein D: Physiological and Biochemical Aspects of Leishmania Development. In Leishmania After the Genome. Edited by Myler P, Fassel N. Norfolk: Caister Academic Press; 2008:107-122.
  • [14]Zuckerman A, Lainson R: Leishmania. In Parasitic Protozoa. Edited by Kreier JP. New York: Academic Press; 1977:66-86.
  • [15]Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B: Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 2009, 165(1):32-47.
  • [16]Alcolea PJ, Alonso A, Gomez MJ, Sanchez-Gorostiaga A, Moreno-Paz M, Gonzalez-Pastor JE, Toraño A, Parro V, Larraga V: Temperature increase prevails over acidification in the gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics 2010, 11:31. BioMed Central Full Text
  • [17]Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM: Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 2004, 136(1):71-86.
  • [18]Almeida R, Gilmartin BJ, McCann SH, Norrish A, Ivens AC, Lawson D, Levick MP, Smith DF, Dyall SD, Vetrie D, Freeman TC, Coulson RM, Sampaio I, Schneider H, Blackwell JM: Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol 2004, 136(1):87-100.
  • [19]Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D: Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 2007, 152(1):53-65.
  • [20]Saxena A, Worthey EA, Yan S, Leland A, Stuart KD, Myler PJ: Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Mol Biochem Parasitol 2003, 129(1):103-114.
  • [21]Holzer TR, McMaster WR, Forney JD: Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 2006, 146(2):198-218.
  • [22]Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ: Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 2011, 25(2):515-525.
  • [23]Alcolea PJ, Alonso A, Gomez MJ, Moreno I, Dominguez M, Parro V, Larraga V: Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. Int J Parasitol 2010, 40(13):1497-1516.
  • [24]Alcolea PJ, Alonso A, Larraga V: Genome-wide gene expression profile induced by exposure to cadmium acetate in Leishmania infantum promastigotes. Int Microbiol 2011, 14(1):1-11.
  • [25]Alcolea PJ, Alonso A, Larraga V: Proteome profiling of Leishmania infantum promastigotes. J Eukaryot Microbiol 2011, 58(4):352-358.
  • [26]Alcolea PJ, Alonso A, Sanchez-Gorostiaga A, Moreno-Paz M, Gomez MJ, Ramos I, Parro V, Larraga V: Genome-wide analysis reveals increased levels of transcripts related with infectivity in peanut lectin non-agglutinated promastigotes of Leishmania infantum. Genomics 2009, 93(6):551-564.
  • [27]Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR: Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 2007, 152(1):35-46.
  • [28]Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B: Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 2008, 9:255. BioMed Central Full Text
  • [29]Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D: Retooling Leishmania metabolism: from sand fly gut to human macrophage. Faseb J 2008, 22(2):590-602.
  • [30]Sundstrom C, Nilsson K: Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 1976, 17(5):565-577.
  • [31]Minta JO, Pambrun L: In vitro induction of cytologic and functional differentiation of the immature human monocytelike cell line U-937 with phorbol myristate acetate. Am J Pathol 1985, 119(1):111-126.
  • [32]Hart DT, Vickerman K, Coombs GH: A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology 1981, 82(Pt 3):345-355.
  • [33]Molina R: Laboratory adaptation of an autochtonous colony of Phlebotomus perniciosus Newstead, 1911 (Diptera: Psychodidae). Res Rev Parasitol 1991, 51:87-89.
  • [34]Jimenez M, Gonzalez E, Iriso A, Marco E, Alegret A, Fuster F, Molina R: Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid. Spain Parasitol Res 2013, 112(7):2453-2459.
  • [35]Rastrojo A, Carrasco-Ramiro F, Martin D, Crespillo A, Reguera RM, Aguado B, Requena JM: The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics 2013, 14:223. BioMed Central Full Text
  • [36]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [37]GeneDB http://www.genedb.org/Homepage/Linfantum webcite
  • [38]TriTrypDB http://tritrypdb.org/tritrypdb/ webcite
  • [39]KEGG: Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/ webcite
  • [40]Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, et al.: The genome of the kinetoplastid parasite, Leishmania major. Science 2005, 309(5733):436-442.
  • [41]Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, et al.: Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007, 39(7):839-847.
  • [42]Zhang K, Barron T, Turco SJ, Beverley SM: The LPG1 gene family of Leishmania major. Mol Biochem Parasitol 2004, 136(1):11-23.
  • [43]McConville MJ, Ferguson MAJ: The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993, 294:305-324.
  • [44]Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, McConville MJ: Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A 2006, 103(14):5502-5507.
  • [45]McConville MJ, De Souza DP, Saunders EC, Pyke J, Naderer T, Ellis MA, Sernee FM, Ralton JE, Likic VA: Analysis of the Leishmania Metabolome. In Leishmania After the Genome. Edited by Myler PJ, Fassel N. Norfolk: Caister Academic Press; 2008:75-106.
  • [46]Sacks DL: Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 1989, 69(1):100-103.
  • [47]Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, Smith DF: Comparative expression profiling of leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis 2009, 3(7):e476.
  • [48]Anez N, Tang Y, Rojas A, Crisante G, Killick-Kendrick M, Killick-Kendrick R: Detection of amastigote-like forms in the valve of Phlebotomus papatasi infected with Leishmania major. Mem Inst Oswaldo Cruz 2003, 98(4):495-498.
  • [49]Tang Y, Ward RD: Sugar feeding and fluid destination control in the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae). Med Vet Entomol 1998, 12(1):13-19.
  • [50]McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD: Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002, 66:122-154.
  • [51]Suzuki E, Tanaka AK, Toledo MS, Takahashi HK, Straus AH: Role of beta-D-galactofuranose in Leishmania major macrophage invasion. Infect Immun 2002, 70(12):6592-6596.
  • [52]Oppenheimer M, Valenciano AL, Sobrado P: Biosynthesis of galactofuranose in kinetoplastids: novel therapeutic targets for treating leishmaniasis and chagas’ disease. Enzyme Res 2011, 2011:415976.
  • [53]Bolhassani A, Gholami E, Zahedifard F, Moradin N, Parsi P, Doustdari F, Seyed N, Papadopoulou B, Rafati S: Leishmania major: protective capacity of DNA vaccine using amastin fused to HSV-1 VP22 and EGFP in BALB/c mice model. Exp Parasitol 2011, 128(1):9-17.
  文献评价指标  
  下载次数:13次 浏览次数:10次