期刊论文详细信息
BMC Research Notes
In silico prediction of protein-protein interactions in human macrophages
Alia Benkahla1  Christine Brun3  Slimane Ben Miled2  Fatma Guerfali1  Oussema Souiai3 
[1] LIVGM + Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Avenue Jugurtha, Tunis, Tunisia;ENIT-LAMSIN BP 37, Tunis, Tunisia;TAGC, Inserm UMR_S 1090, Aix-Marseille Université, Marseille, France
关键词: Inference;    Macrophage;    Contextualisation;    Protein interaction network;   
Others  :  1134229
DOI  :  10.1186/1756-0500-7-157
 received in 2013-05-14, accepted in 2014-03-07,  发布年份 2014
PDF
【 摘 要 】

Background

Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages.

Results

We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection.

Conclusion

Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.

【 授权许可】

   
2014 Souiai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305123038201.pdf 1672KB PDF download
Figure 7. 66KB Image download
Figure 6. 77KB Image download
Figure 5. 32KB Image download
Figure 4. 87KB Image download
Figure 3. 38KB Image download
Figure 2. 57KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Harries AD, Dye C: Tuberculosis. Ann Trop Med Parasitol 2006, 100:415-431.
  • [2]Shenoi S, Friedland G: Extensively drug-resistant tuberculosis: a new face to an old pathogen. Annu Rev Med 2009, 60:307-320.
  • [3]Kuijl C, Savage NDL, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJF, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff THM, Neefjes J: Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2007, 450:725-730.
  • [4]Tiwari S, Choi H-P, Matsuzawa T, Pypaert M, MacMicking JD: Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat Immunol 2009, 10:907-917.
  • [5]Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinforma Oxf Engl 2008, 24:i223-i231.
  • [6]Suter B, Kittanakom S, Stagljar I: Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 2008, 19:316-323.
  • [7]Gavin A-C, Maeda K, Kühner S: Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 2011, 22:42-49.
  • [8]Lee H, Deng M, Sun F, Chen T: An integrated approach to the prediction of domain-domain interactions. BMC Bioinforma 2006, 7:269. BioMed Central Full Text
  • [9]Singhal M, Resat H: A domain-based approach to predict protein-protein interactions. BMC Bioinforma 2007, 8:199. BioMed Central Full Text
  • [10]Sprinzak E, Margalit H: Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 2001, 311:681-692.
  • [11]Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M: Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004, 14:1107-1118.
  • [12]Sanchez C, Lachaize C, Janody F, Bellon B, Roder L, Euzenat J, Rechenmann F, Jacq B: Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res 1999, 27:89-94.
  • [13]Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol 2003, 5:R6. BioMed Central Full Text
  • [14]Dutkowski J, Tiuryn J: Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinforma 2009, 10:393. BioMed Central Full Text
  • [15]Li H, Liang S: Local network topology in human protein interaction data predicts functional association. Plos One 2009, 4:e6410.
  • [16]Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein function. Mol Syst Biol 2007, 3:88.
  • [17]Tu K, Yu H, Li Y-X: Combining gene expression profiles and protein-protein interaction data to infer gene functions. J Biotechnol 2006, 124:475-485.
  • [18]Wu Y, Lonardi S: A linear-time algorithm for predicting functional annotations from PPI networks. J Bioinform Comput Biol 2008, 6:1049-1065.
  • [19]Baudot A, Jacq B, Brun C: A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network. Genome Biol 2004, 5:R76. BioMed Central Full Text
  • [20]Makino T, Gojobori T: Evolution of protein-protein interaction network. Genome Dyn 2007, 3:13-29.
  • [21]Makino T, Suzuki Y, Gojobori T: Differential evolutionary rates of duplicated genes in protein interaction network. Gene 2006, 385:57-63.
  • [22]Baudot A, Angelelli JB, Guénoche A, Jacq B, Brun C: Defining a modular signalling network from the fly interactome. Bmc Syst Biol 2008, 2:45. BioMed Central Full Text
  • [23]Qian X, Yoon B-J: Effective identification of conserved pathways in biological networks using hidden Markov models. PloS One 2009, 4:e8070.
  • [24]Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási AL, Vidal M: An empirical framework for binary interactome mapping. Nat Methods 2009, 6:83-90.
  • [25]Bossi A, Lehner B: Tissue specificity and the human protein interaction network. Mol Syst Biol 2009, 5:260.
  • [26]Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK, Sato M, Wang K, Sumazin P, Kustagi M, Bisikirska BC, Basso K, Beltrao P, Krogan N, Gautier J, Dalla-Favera R, Califano A: A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol Syst Biol 2010, 6:377.
  • [27]Rachlin J, Cohen DD, Cantor C, Kasif S: Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2006, 2:66.
  • [28]Myers CL, Chiriac C, Troyanskaya OG: Discovering biological networks from diverse functional genomic data. Methods Mol Biol Clifton Nj 2009, 563:157-175.
  • [29]Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F: Towards a knowledge-based human protein atlas. Nat Biotechnol 2010, 28:1248-1250.
  • [30]Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, Anand SK, Madavan V, Joseph A, Wong GW, Schiemann WP, Constantinescu SN, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe GC, Dang CV, Garcia JG, Pevsner J, Jensen ON, Roepstorff P, Deshpande KS, Chinnaiyan AM, Hamosh A, Chakravarti A, Pandey A: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.
  • [31]Kumar P, Kumar D, Parikh A, Rananaware D, Gupta M, Singh Y, Nandicoori VK: The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 2009, 284:11090-11099.
  • [32]Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan THW, Shah N, Lo R, Naseer M, Que J, Yau M, Acab M, Tulpan D, Whiteside MD, Chikatamarla A, Mah B, Munzner T, Hokamp K, Hancock REW, Brinkman FSL: InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 2008, 4:218.
  • [33]Prieto C, De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res 2006, 34(Web Server issue):W298-W302.
  • [34]Kohonen T: Self-Organizing Maps. Springer; 2000. http://www.springer.com/physics/complexity/book/978-3-540-67921-9 webcite
  • [35]Souiai O, Becker E, Prieto C, Benkahla A, De las Rivas J, Brun C: Functional integrative levels in the human interactome recapitulate organ organization. PloS One 2011, 6:e22051.
  • [36]Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB: Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 2003, 102:672-681.
  • [37]Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O: Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. Plos One 2008, 3:e1403.
  • [38]Lee J, Hartman M, Kornfeld H: Macrophage apoptosis in tuberculosis. Yonsei Med J 2009, 50:1-11.
  • [39]De Sousa AR, Penalva LO, Marcotte EM, Vogel C: Global signatures of protein and mRNA expression levels. Mol Biosyst 2009, 5:1512-1526.
  • [40]Nooren IMA, Thornton JM: Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 2003, 325:991-1018.
  • [41]Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, Coller HA, Troyanskaya OG: Exploring the human genome with functional maps. Genome Res 2009, 19:1093-1106.
  • [42]Tanay A, Sharan R, Kupiec M, Shamir R: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 2004, 101:2981-2986.
  • [43]Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisenberg D, Steipe B, Hogue C, Apweiler R: The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 2004, 22:177-183.
  • [44]Finn RD, Marshall M, Bateman A: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinforma Oxf Engl 2005, 21:410-412.
  • [45]Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B: GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 2004, 5:R101. BioMed Central Full Text
  • [46]Dice L: Measures of the amount of ecologic association between species. Ecology 1945, 26:297-302.
  • [47]Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009, 37(Database issue):D885-D890.
  • [48]Eschrich SA, Hoerter AM: Libaffy: software for processing Affymetrix GeneChip data. Bioinforma Oxf Engl 2007, 23:1562-1564.
  • [49]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98:5116-5121.
  • [50]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  文献评价指标  
  下载次数:48次 浏览次数:17次