期刊论文详细信息
BMC Systems Biology
Interactomics profiling of the negative regulatory function of carbon monoxide on RANKL-treated RAW 264.7 cells during osteoclastogenesis
Ru-Yu Pan3  Min-Jen Tseng4  Ching-Wu Hsia4  Huey-Kang Sytwu5  Guo-Hau Gou3  Jia-Fwu Shyu1  Wei-Tso Chia6  Feng-Jen Tseng2 
[1] Department of Biology and Anatomy, National Defense Medical Center, Neihu 114, Taipei, Taiwan, Republic of China;Department of Orthopedics, Hualien Armed Force Hospital, Hualien 971, Taiwan, Republic of China;Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Neihu 114, Taipei, Taiwan, Republic of China;Department of Life Science, National Chung Cheng University, 168 University Road, Minhsiung, Chiayi 621, Republic of China;Graduate Institute of Medical Science, National Defense Medical Center, Neihu 114, Taipei, Taiwan, Republic of China;Department of Health, Hsin Chu General Hospital, Hsinchu 300, Taiwan, Republic of China
关键词: RAW 264.7;    RANKL;    Interactome;    Osteoclastogenesis;    Carbon monoxide;   
Others  :  866374
DOI  :  10.1186/1752-0509-8-57
 received in 2012-12-27, accepted in 2014-05-12,  发布年份 2014
PDF
【 摘 要 】

Background

During osteoclastogenesis, the maturation of osteoclast (OC) progenitors is stimulated by the receptor activator of nuclear factor-κB ligand (RANKL). Excess OC production plays a critical role in the pathogenesis of inflammatory bone disorders. Conversely, the inhibition of abnormal OC proliferation reduces inflammation-induced bone loss. Low concentrations of carbon monoxide (CO) are known to decrease inflammation and OC-mediated bone erosion but the molecular mechanism is unknown.

Results

To obtain insight into the biological function of CO, cultured RANKL-treated RAW 264.7 cells were used in an in vitro experimental model of osteoclastogenesis. The results showed that CO inhibited: 1) tartrate-resistant acid phosphatase (TRAP)-positive cell formation; 2) F-actin ring production; 3) c-fos pathway activation; 4) the expression of cathepsin K, TRAP, calcitonin receptor, and matrix metalloproteinase-9 mRNAs; 5) the expression of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 in translation. Protein-protein interaction analysis predicted mitogen-activated protein kinase kinase kinase 4 as the controlling hub.

Conclusions

Low-concentrations of CO (250 ppm) may inhibit osteoclastogenesis. Data from STRING- and IPA-based interactome analyses suggested that the expression of proteins with the functions of signal transduction, enzymes, and epigenetic regulation are significantly altered by CO during RANKL-induced osteoclastogenesis. Our study provides the first interactome analysis of osteoclastogenesis, the results of which supported the negative regulation of OC differentiation by CO.

【 授权许可】

   
2014 Tseng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727071824124.pdf 1371KB PDF download
162KB Image download
79KB Image download
111KB Image download
176KB Image download
105KB Image download
【 图 表 】

【 参考文献 】
  • [1]Rasmussen H: Ionic and hormonal control of calcium homeostasis. Am J Med 1971, 50:567-588.
  • [2]Mundy GR, Guise TA: Hormonal control of calcium homeostasis. Clin Chem 1999, 45:1347-1352.
  • [3]Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G: Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005, 434:514-520.
  • [4]Zaidi M: Skeletal remodeling in health and disease. Nat Med 2007, 13:791-801.
  • [5]Takayanagi H, Takayanagi H: Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007, 7:292-304.
  • [6]Ross FP, Teitelbaum SL: Alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 2005, 208:88-105.
  • [7]Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990, 345:442-444.
  • [8]Asagiri M, Takayanagi H: The molecular understanding of osteoclast differentiation. Bone 2007, 40:251-264.
  • [9]Theill LE, Boyle WJ, Penninger JM: RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002, 20:795-823.
  • [10]Kong Y-Y, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304-309.
  • [11]Walsh MC, Choi Y: Biology of the TRANCE axis. Cytokine Growth Factor Rev 2003, 14:251-263.
  • [12]Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T: T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000, 408:600-605.
  • [13]Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165-176.
  • [14]Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998, 95:3597-3602.
  • [15]Douglas CG, Haldane JS, Haldane JBS: The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol 1912, 44:275-304.
  • [16]Von Burg R: Toxicology Update. J Appl Toxicol 1999, 19:379-386.
  • [17]Sjostrand T: Endogenous production of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest 1949, 1:201-214.
  • [18]Sjostrand T: The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 1952, 26:338-344.
  • [19]Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AMK, Soares MP: Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. J Exp Med 2000, 192:1015-1026.
  • [20]Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AMK: Heme oxygenase-1 inhibits TNF-alpha -induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 2000, 278:L312-319.
  • [21]Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S: Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997, 272:32804-32809.
  • [22]Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000, 6:422-428.
  • [23]Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS: Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 2010, 222:757-768.
  • [24]Collin-Osdoby P, Yu X, Zheng H: Osdoby P (Eds.): RANKL-Mediated Osteoclast Formation from Murine RAW 264.7 Cells. Totowa, New Jersey: Humana Press; 2003.
  • [25]Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M: Involvement of p38 Mitogen-activated Protein Kinase Signaling Pathway in Osteoclastogenesis Mediated by Receptor Activator of NF-kappa B Ligand (RANKL). J Biol Chem 2000, 275:31155-31161.
  • [26]David J-P, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF: JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 2002, 115:4317-4325.
  • [27]Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K: U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 2002, 277:47366-47372.
  • [28]Ryan DP, Matthews JM: Protein-protein interactions in human disease. Curr Opin Struct Biol 2005, 15:441-446.
  • [29]Sato K, Balla J, Otterbein L, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH, Soares MP: Carbon Monoxide Generated by Heme Oxygenase-1 Suppresses the Rejection of Mouse-to-Rat Cardiac Transplants. J Immunol 2001, 166:4185-4194.
  • [30]Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ: Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 2001, 7:598-604.
  • [31]Ndisang JF, Gai P, Berni L, Mirabella C, Baronti R, Mannaioni PF, Masini E: Modulation of the immunological response of guinea pig mast cells by carbon monoxide. Immunopharmacology 1999, 43:65-73.
  • [32]Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP: Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 2007, 117:438-447.
  • [33]Hu C-M, Lin H-H, Chiang M-T, Chang P-F, Chau L-Y: Systemic Expression of Heme Oxygenase-1 Ameliorates Type 1 Diabetes in NOD Mice. Diabetes 2007, 56:1240-1247.
  • [34]Ferrandiz ML, Maicas N, Garcia-Arnandis I, Terencio MC, Motterlini R, Devesa I, Joosten LA, van den Berg WB, Alcaraz MJ: Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 2008, 67:1211-1217.
  • [35]Teitelbaum SL: Bone resorption by osteoclasts. Science 2000, 289:1504-1508.
  • [36]Wada T, Nakashima T, Hiroshi N, Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006, 12:17-25.
  • [37]Wang Z-Q, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF: Bone and haematopoietic defects in mice lacking c-fos. Nature 1992, 360:741-745.
  • [38]Soysa NS, Alles N: NF-[kappa]B functions in osteoclasts. Biochem Biophys Res Commun 2009, 378:1-5.
  • [39]Grigoriadis A, Wang Z, Cecchini M, Hofstetter W, Felix R, Fleisch H, Wagner E: c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994, 266:443-448.
  • [40]Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, Katada T, Wakabayashi K, Oda H, Nakamura K, Tanaka S: Possible Involvement of IκB Kinase 2 and MKK7 in Osteoclastogenesis Induced by Receptor Activator of Nuclear Factor κB Ligand. J Bone Miner Res 2002, 17:612-621.
  • [41]Wan Y, Chong LW, Evans RM, Wan Y, Chong L-W, Evans RM: PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007, 13:1496-1503.
  • [42]Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF: Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 2000, 24:184-187.
  • [43]Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP: NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene 2006, 372:92-102.
  • [44]Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J-i, Wagner EF, Mak TW, Kodama T, Taniguchi T: Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Dev Cell 2002, 3:889-901.
  • [45]Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, Hisatake K, Nogi Y: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004, 279:45969-45979.
  • [46]Yang J, Kiefer S, Rauchman M: Characterization of the gene encoding mouse retinoblastoma binding protein-7, a component of chromatin-remodeling complexes. Genomics 2002, 80:407-415.
  • [47]Gao Z, He Q, Peng B, Chiao PJ, Ye J: Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem 2006, 281:4540-4547.
  • [48]Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, Mansky KC: HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 2011, 286:12056-12065.
  • [49]Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S: Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res 2011, 26:2665-2671.
  • [50]Abell AN, Jordan NV, Huang W, Prat A, Midland AA, Johnson NL, Granger DA, Mieczkowski PA, Perou CM, Gomez SM, Li L, Johnson GL: MAP3K4/CBP-regulated H2B acetylation controls epithelial-mesenchymal transition in trophoblast stem cells. Cell Stem Cell 2011, 8:525-537.
  • [51]Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R, Yu Y, Bhagat TD, Bhattacharyya S, Barreyro L, Heuck C, Mo Y, Parekh S, McMahon C, Pellagatti A, Boultwood J, Montagna C, Silverman L, Maciejewski J, Greally JM, Ye BH, List AF, Steidl C, Steidl U, Verma A: Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 2012, 120:2076-2086.
  • [52]Qi M, Elion EA: MAP kinase pathways. J Cell Sci 2005, 118:3569-3572.
  • [53]Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, Nakamura K, Tanaka S, Rodan GA, Duong Le T: IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol 2002, 168:5103-5109.
  文献评价指标  
  下载次数:8次 浏览次数:6次