| BMC Cardiovascular Disorders | |
| Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction | |
| Heng Da Cheng1  Lei Lei Yin3  Jing Yan Piao3  Yang Li3  Bai He Han3  Wei Cao3  Ying Tao Zhang2  Xiu Fen Qu3  Tao Song3  | |
| [1] Department of Computer Science, Utah State University, Salt Lake City, UT, USA;School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China;Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin City 150001, Heilongjiang Province, China | |
| 关键词: Machine learning; Heart-rate variability; Support vector machine; Cardiac death; Acute myocardial infarction; | |
| Others : 855093 DOI : 10.1186/1471-2261-14-59 |
|
| received in 2014-02-08, accepted in 2014-04-28, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Previous studies indicate that decreased heart-rate variability (HRV) is related to the risk of death in patients after acute myocardial infarction (AMI). However, the conventional indices of HRV have poor predictive value for mortality. Our aim was to develop novel predictive models based on support vector machine (SVM) to study the integrated features of HRV for improving risk stratification after AMI.
Methods
A series of heart-rate dynamic parameters from 208 patients were analyzed after a mean follow-up time of 28 months. Patient electrocardiographic data were classified as either survivals or cardiac deaths. SVM models were established based on different combinations of heart-rate dynamic variables and compared to left ventricular ejection fraction (LVEF), standard deviation of normal-to-normal intervals (SDNN) and deceleration capacity (DC) of heart rate. We tested the accuracy of predictors by assessing the area under the receiver-operator characteristics curve (AUC).
Results
We evaluated a SVM algorithm that integrated various electrocardiographic features based on three models: (A) HRV complex; (B) 6 dimension vector; and (C) 8 dimension vector. Mean AUC of HRV complex was 0.8902, 0.8880 for 6 dimension vector and 0.8579 for 8 dimension vector, compared with 0.7424 for LVEF, 0.7932 for SDNN and 0.7399 for DC.
Conclusions
HRV complex yielded the largest AUC and is the best classifier for predicting cardiac death after AMI.
【 授权许可】
2014 Song et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140722025724857.pdf | 378KB | ||
| 69KB | Image |
【 图 表 】
【 参考文献 】
- [1]Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G: Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med 2005, 352(3):225-237.
- [2]Kusmirek SL, Gold MR: Sudden cardiac death: the role of risk stratification. Am Heart J 2007, 153(4):25-33.
- [3]Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, Daubert JP, Higgins SL, Brown MW, Andrews ML: Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002, 346(12):877-883.
- [4]Kurths J, Voss A, Saparin P, Witt A, Kleiner H, Wessel N: Quantitative analysis of heart rate variability. CHAOS 1995, 5(1):88-94.
- [5]Huikuri HV, Tapanainen JM, Lindgren K, Raatikainen P, Mäkikallio TH, Airaksinen KJ, Myerburg RJ: Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. J Am Coll Cardiol 2003, 42(4):652-658.
- [6]Mäkikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM, Tulppo MP, Schmidt G, Huikuri HV: Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur Heart J 2005, 26(8):762-769.
- [7]Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, Di Mario C: Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J 2001, 22(16):1374-1450.
- [8]Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). J Am Coll Cardiol 2004, 44(3):E1-E211.
- [9]Camm A, Malik M, Bigger J, Breithardt G, Cerutti S, Cohen R, Coumel P, Fallen E, Kennedy H, Kleiger R: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93(5):1043-1065.
- [10]Buccelletti E, Gilardi E, Scaini E, Galiuto L, Persiani R, Biondi A, Basile F, Silveri NG: Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci 2009, 13(4):299-307.
- [11]Soliman EZ, Elsalam MA, Li Y: The relationship between high resting heart rate and ventricular arrhythmogenesis in patients referred to ambulatory 24 h electrocardiographic recording. Europace 2010, 12(2):261-265.
- [12]Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT Jr, Schömig A: Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 1999, 353(9162):1390-1396.
- [13]Bauer A, Malik M, Schmidt G, Barthel P, Bonnemeier H, Cygankiewicz I, Guzik P, Lombardi F, Müller A, Oto A: Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology Consensus. J Am Coll Cardiol 2008, 52(17):1353-1365.
- [14]Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mäkikallio T, Ulm K, Hnatkova K, Schömig A, Huikuri H, Bunde A: Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 2006, 367(9523):1674-1681.
- [15]Gaspar P, Carbonell J, Oliveira JL: On the parameter optimization of Support Vector Machines for binary classification. J Integr Bioinform 2012, 9(3):201.
- [16]Huang S, Shen Q, Duong TQ: Quantitative prediction of acute ischemic tissue fate using support vector machine. Brain Res 2011, 1405:77-84.
- [17]Vihinen M: How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics 2012, 13(Suppl 4):S2. BioMed Central Full Text
- [18]Schwartz P, La Rovere M, Vanoli E: Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 1992, 85(1 Suppl):I77.
- [19]Chen LS, Zhou S, Fishbein MC, CHEN PS: New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol 2007, 18(1):123-127.
- [20]La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ: Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998, 351(9101):478-484.
- [21]Kim HK, Jeong MH, Ahn Y, Kim JH, Chae SC, Kim YJ, Hur SH, Seong IW, Hong TJ, Choi DH: Hospital discharge risk score system for the assessment of clinical outcomes in patients with acute myocardial infarction (Korea Acute Myocardial Infarction Registry [KAMIR] score). Am J Cardiol 2011, 107(7):965-971. e961
- [22]Atwater BD, Thompson VP, Vest RN, Shaw LK, Mazzei WR, Al-Khatib SM, Hranitzky PM, Bahnson TD, Velazquez EJ, Califf RM: Usefulness of the Duke Sudden Cardiac Death risk score for predicting sudden cardiac death in patients with angiographic (>75% narrowing) coronary artery disease. Am J Cardiol 2009, 104(12):1624-1630.
- [23]Ebrahimpour M, Putniņš TJ, Berryman MJ, Allison A, Ng BW-H, Abbott D: Automated authorship attribution using advanced signal classification techniques. PLoS One 2013, 8(2):e54998.
- [24]Secemsky EA, Verrier RL, Cooke G, Ghossein C, Subacius H, Manuchehry A, Herzog CA, Passman R: High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm 2011, 8(4):592-598.
- [25]Alonzo T, Pepe M: Development and evaluation of classifiers. Methods Mol Biol 2007, 404:89.
- [26]Vandeput S, Verheyden B, Aubert A, Van Huffel S: Nonlinear heart rate dynamics: circadian profile and influence of age and gender. Med Eng Phys 2012, 34(1):108-117.
- [27]Monasterio V, Laguna P, Cygankiewicz I, Vázquez R, Bayés-Genís A, Bayés de Luna A, Martínez JP: Average T-wave alternans activity in ambulatory ECG records predicts sudden cardiac death in patients with chronic heart failure. Heart Rhythm 2012, 9(3):383-389.
PDF