期刊论文详细信息
BMC Evolutionary Biology
Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera
Célio F B Haddad6  Stephen Richards3  Eli Greenbaum5  Simon P Loader1  Mauricio C Forlani2  Relebohile Sekonyela2  Jeffrey W Streicher4  Rafael O de Sá2 
[1] Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland;Department of Biology, University of Richmond, Richmond, VA 23173, USA;Department of Terrestrial Vertebrates, Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT, 0801, Australia;Amphibian and Reptile Diversity Research Center, Department of Biology, The University of Texas at Arlington, Arlington, TX, 76010, USA;Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA;Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Caixa Postal 199, Rio Claro, São Paulo, 13506-900, Brazil
关键词: New World genera;    Subfamilies;    Systematics;    Phylogeny;    Microhylidae;   
Others  :  1139890
DOI  :  10.1186/1471-2148-12-241
 received in 2012-08-24, accepted in 2012-11-28,  发布年份 2012
PDF
【 摘 要 】

Background

Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis).

Results

One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved.

Conclusion

Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to mid Miocene.

【 授权许可】

   
2012 de Sa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324012135616.pdf 1732KB PDF download
Figure 6. 122KB Image download
Figure 5. 68KB Image download
Figure 4. 136KB Image download
Figure 3. 78KB Image download
Figure 2. 113KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Parker HW: A monograph of the frogs of the family Microhylidae. London: British Museum (Natural History); 1934.
  • [2]Lynch JD: The transition from archaic to advanced frogs. In Evolutionary biology of the anurans: contemporary research on major problems. Edited by Vial JL. Columbia: University of Missouri Press; 1973:133-182.
  • [3]Blommers-Schlösser RMA: Observations on the larval development of some Malagasy frogs, with notes on their ecology and biology (anura: dyscophinae, scaphiophryninae, and cophylinae). Beaufortia 1975, 24:7-26.
  • [4]Wassersug RJ, Pyburn WF: The biology of the Pe-ret’ toad, Otophryne robusta (Microhylidae), with special consideration of its fossorial larva and systematic relationships. Zoological Journal of the Linnean Society 1987, 91:137-169.
  • [5]Wu SH: Phylogenetic relationships, higher classification, and historical biogeography of the microhyloid frogs (Lissamphibia: Anura: Brevicipitidae and Microhylidae). University of Michigan; 1994. Ph. D
  • [6]Trueb L, Diaz R, Blackburn DC: Osteology and chondrocranial morphology of Gastrophryne carolinensis (Anura: Microhylidae), with a review of the osteological diversity of New World microhylids. Phyllomedusa 2011, 10:99-135.
  • [7]Emerson SB: The fossorial frog adaptive zone: a study of convergence and parallelism in the Anura. Los Angeles: University of South California; 1971. Ph. D
  • [8]Haas A: Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 2003, 19:23-89.
  • [9]Frost DR, Grant T, Faivovich J, Bain R, Haas A, Haddad CFB, de Sá RO, Donnellan SC, Raxworthy CJ, Wilkinson M, Channing A, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green D, Wheeler WC: The amphibian tree of life. Bulletin of the American Museum of Natural History 2006, 297:1-370.
  • [10]Pauly GB, Hillis DM, Cannatella DC: Taxonomic freedom and the role of official 778 lists of species names. Herpetologica 2009, 65:115-128.
  • [11]Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia with over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011, 61:543-583.
  • [12]Frost DR: Amphibian species of the world: an online reference. New York, USA: American Museum of Natural History; 2011. Version 5.5 (accessed on July 1st, 2012) Electronic Database Accessible at http://research.amnh.org/herpetology/amphibia webcite
  • [13]Bossuyt F, Roelants K: Anura. In The Timetree of Life. Edited by Hedges SB, Kumar S. New York, U.S.A.: Oxford University Press; 2009:357-364.
  • [14]Frost DR: Amphibian species of the world: an online reference. New York, USA: American Museum of Natural History; 2007. Version 5.0 Electronic Database Accessible at http://research.amnh.org/herpetology/amphibia webcite
  • [15]Van Bocxlaer I, Roelants K, Biju SD, Nagaraju J, Bossuyt F: Late cretaceous vicariance in gondwanan amphibians. PLoS One 2006, 1(1):74.
  • [16]Van der Meijden A, Vences M, Hoegg S, Boistel R, Channing A, Myer A: Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins. Mol Phylogenet Evol 2007, 44:1017-1030.
  • [17]Greenbaum E, Smith EN, de Sá RO: Molecular systematics of the middle American genus hypopachus (anura: microhylidae). Mol Phylogenet Evol 2011, 61:265-277.
  • [18]Streicher JW, Cox CL, Campbell JA, Smith EN, de Sá RO: Rapid range expansion in the great plains narrow-mouthed toad (gastrophryne olivacea) and a revised taxonomy for north American microhylids. Mol Phylogenet Evol 2012, 64:645-653.
  • [19]de Sá RO, Heyer WR, Camargo A: A phylogenetic analysis of vanzolinius heyer, 1974 (amphibia, anura, leptodactylidae): taxonomic and life history implications. Arquivos do Museu Nacional, Rio de Janeiro 2005, 63:707-726.
  • [20]Streicher JW, Crawford AJ, Edwards CE: Multilocus molecular phylogenetic analysis of the craugastor podiciferus (anura: craugastoridae) species complex in isthmian central America. Mol Phylogenet Evol 2009, 53:620-630.
  • [21]Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G: The simple fool’s guide to PCR,v.2.0. Edited by Palumbi S. Honolulu, HI: Department of Zoology and Kewalo Marine Laboratory. University of Hawaii; 1991.
  • [22]Hillis DM, Dixon MT: Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 1991, 66:411-453.
  • [23]Bossuyt F, Milinkovitch MC: Amphibians as indicators of early Tertiary “out-of-India” dispersal of vertebrates. Science 2001, 292:93-95.
  • [24]Liu K, Warnow TJ, Holder MT, Nelesen S, Yu J, Stamatakis A, Linder CR: SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 2011, 61:90-106.
  • [25]Maddison DR, Maddison WP: [http://macclade.org] webciteMacClade 4: analysis of phylogeny and character evolution. Version 4.08a. 2005.
  • [26]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES science gateway for inference of large phylogenetic trees.Proceedings of the gateway computing environments workshop (GCE). New Orleans, LA; 2010:1-8. 14 Nov
  • [27]Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin: The University of Texas; 2006.
  • [28]Sikes DS, Lewis PO: [http://mercury2.iab.uaf.edu/derek_sikes/software2.htm] webcitePAUPRat: a tool to implement parsi- mony ratchet searches using PAUP*. 2001.
  • [29]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [30]Ronquist F, Huelsenbeck JP: MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [31]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [32]Kuhner MK, Felsenstein J: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 1994, 11:459-468.
  • [33]Wilgenbusch JC, Warren DL, Swofford DL: System for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Tallahassee, USA: FloridaState University; 2004.
  • [34]Figtree v 1.5. Available from http://tree.bio.ed.ac.uk/software/figtree webcite
  • [35]Sanchiz B: Encyclopedia of paleoherpetology. Part 4. Salientia. München: Pfeil; 1998:275.
  • [36]Thorne JL, Kishino H: Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 2002, 51:689-702.
  • [37]Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 2002, 19:101-109.
  • [38]Holman JA: Fossil frogs and toads of North America. In Indiana university press. Edited by Farlow JO. Bloomington: Indiana; 2003:246.
  • [39]Gernhard T: The conditioned reconstructed process. J Theor Biol 2008, 253:769-778.
  • [40]Rambaut A, Drummond AJ: Tracer v1.4. 2007. Available from http://beast.bio.ed.ac.uk/Tracer webcite
  • [41]Maddison WP: Missing data versus missing characters in phylogenetic analysis. Syst Biol 1993, 42:576-581.
  • [42]Wiens JJ, Morrill MC: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 2011, 60:719-731.
  • [43]Hillis DM, Bull JJ: An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 1993, 42:182-192.
  • [44]Kurabayashi A, Matsui M, Belabut DM, Yong HS, Ahmad N, Sudin A, Kuramoto M, Hamidy A, Sumida M: From Antarctica or Asia? New colonization scenario for Australina-New Guinean narrow mouth toads suggested from the finding on a mysterious genus Gastrophrynoides. BMC Evol Biol 2011, 11:175. BioMed Central Full Text
  • [45]Ford L, Cannatella C: The major clades of frogs. Herpetological Monographs 1993, 7:94-117.
  • [46]Matsui M, Hamidy A, Belabut D, Ahmad N, Panha S, Sudin A, Khonsue W, Oh H-S, Yong H-S, Jiang J-P, Nishikawa K: Systematic relationships of oriental tiny frogs of the family microhylidae (amphibia, anura) as revealed by mtDNA genealogy. Mol Phylogenet Evol 2011, 61:167-176.
  • [47]Köhler F, Günther R: The radiation of microhylid frogs (Amphibia: Anura) on New Guinea: A mitochondrial phylogeny reveals parallel evolution of morphological and life history traits and disproves the current morphology-based classification. Mol Phylogenet Evol 2008, 47:353-365.
  • [48]Günther R: Metamagnusia and Pseudocallulops, two new genera of microhylid frogs from New Guinea (Amphibia, Anura, Microhylidae). Zoosystematics and Evolution, Mitteilungen aus dem Museum für Naturkunde in Berlin 2009, 85:171-187.
  • [49]Andreone F, Vences M, Vieites DR, Glaw F, Meyer A: Recurrent ecological adaptations revealed through a molecular amalysis of the secretivce cophyline frogs of Madagascar. Mol Phylogenet Evol 2005, 34:315-322.
  • [50]Dunn ER: Notes on South American frogs of the family Microhylidae. American Museum Museum of Natural History, Novitates 1949, 1419:1-21.
  • [51]Carvalho AL: A preliminary synopsis of the genera of American microhylid frogs. Occasional Papers of the Museum of Zoology, University of Michigan 1954, 555:1-19.
  • [52]Lehr E, Trueb L: Diversity among New World microhylid frogs (Anura: Microhylidae): morphological and osteological comparisons between Nelsonophryne (Günther 1901) and a new genus from Peru. Zoological Journal of the Linnean Society 2007, 149:583-609.
  • [53]Donnelly MA, de Sá RO, Guyer C: Description of the tadpoles of Gastrophryne pictiventris and Nelsonophryne aterrima (Anura: Microhylidae), with a review of morphological variation in free-swimming microhylid larvae. American Museum Novitates 1990, 2976:1-19.
  • [54]Lehr E, Trueb L, Venegas PJ, Arbelaez E: Descriptions of the tadpoles of two Neotropical microhylid frogs, Melanophryne carpish and Nelsonophryne aequatorialis (Anura: Microhylidae). J Herpetol 2007, 41:581-589.
  • [55]Schlüter A, Salas AW: Reproduction, tadpoles, and ecological aspects of three syntopic microhylid species from Peru (Amphibian: Microhylidae). Stuttgarter Beiträge zur Naturkunde 1991, 458:1-17.
  • [56]Zweifel RG: A new genus and species of microhylid frog from the Cerro de la Neblina region of Venezuela and a discussion of relationships among new world microhylid genera. American Museum Novitates 1986, 2863:1-24.
  • [57]Caramaschi U, Cruz CAG: A new species of Chiasmocleis Méhely,1904 from Brazilian Amazonia (Amphibia, Anura, Microhylidae). Boletim do Museu Nacional (N.S.) Zoologia 2001, 469:1-8.
  • [58]Moravec J, Köhler J: A new species of Chiasmocleis (Anura: Microhylidae) from the Iquitos region, Amazonian Peru, with possible direct development. Zootaxa 2007, 1605:59-67.
  • [59]Duellman WE, Trueb L: Biology of amphibia. New York: McGraw-Hill; 1986.
  • [60]Krügel P, Richter S: Syncope antenori—a bromeliad breeding frog with free-swimming, nonfeeding tadpoles (Anura, Microhylidae). Copeia 1995, 955-963.
  • [61]Forlani M: Morfologia do gênero Chiasmocleis Méhely, 1904 (Anura, Microhylidae, Gastrophryninae), e suas implicações filogenéticas. MS. Sc. Dissertation. Instituto de Biociências da Universidade de São Paulo; 2010:138.
  • [62]Nascimento FAC, Skuk GO: O girino de Chiasmocleis alagoanus Cruz, Caramaschi & Freire, 1999 (Anura: Microhylidae). Biota Neotropica 2006, 6:3.
  • [63]Oliveira Filho JC, Giaretta AA: Tadpole and advertisement call of Chiasmocleis albopunctata (Anura, Microhylidae) from Brazil. Zootaxa 2006, 1353:63-68.
  • [64]Duellman EE: The biology of an equatorial herpetofauna in Amazonian Ecuador. Miscellaneous Publications Museum of Natural History, University of Kansas 1978, 65:1-352.
  • [65]Wogel H, Abrunhosa PA, Prado GM: The tadpole of Chiasmocleis carvalhoi and the advertisement calls of three species of Chiasmocleis (Anura, Microhylidae) from the Atlantic rainforest of southeastern Brazil. Phyllomedusa 2004, 3:133-140.
  • [66]Langone JA, Lavilla EO, Echeverría DD, Mangione S, Segalla MV: Morfologia externa e interna de la larva de Chiasmocleis leucosticta (Boulenger, 1888) (Amphibia, Anura, Microhylidae). Publicaciónn extra del Museo Nacional de Historia Natural y Antropologia 2007, 2:1-17.
  • [67]Santana DJ, Motta AP, Pirani RM, Silva ET, Feio RN: Advertisement call and tadpole of chiasmocleis mantiqueira (anura, microhylidae). J Herpetol 2012, 46:14-18.
  • [68]Hero JM: An illustrated key to tadpoles occurring in the Central Amazon rainforest, Manaus, Amazonas, Brasil. Amazoniana 1990, 11:201-262.
  • [69]Rodrigues DJ, Menin M, Lima AP, Mokrss KS: Tadpole and vocalizations ofChiasmocleis hudsoni(Anura, Microhylidae) in Central Amazonia, Brazil. Zootaxa 2008, 1680:55-58.
  • [70]Dunn ER, Trapido H, Evans H: A new species of the microhylid frog genus Chiasmocleis from Panama. American Museum Museum of Natural History, Novitates 1948, 1376:1-8.
  • [71]Tarigo Rocha M: Redescrição e osteologia de Hyophryne histrio Carvalho, 1954 e sua posição filogenética em Gastrophryninae (Amphibia, Anura, Microhylidae). MS. Sc. Dissertation, Museu Nacional, Universidade Federal do Rio de Janeiro; 2009:147.
  • [72]Wild ER: New genus and species of Amazonian microhylid frog with a phylogenetic analysis of new world genera. Copeia 1995, 837-849.
  • [73]Griffiths I, Carvalho AL: On the validity of employing larval characters as major phyletic indices in Amphibia, Salientia. Rev Bras Biol 1965, 25:113-121.
  • [74]Wogel H, Abrunhosa PA, Pombal JP Jr: Girinos de cinco espécies de anuros do sudeste do Brasil (Amphibia: Hylidae, Leptodactylidae, Microhylidae). Boletim do Museu Nacional, (N. S.) Zoologia 2000, 427:1-16.
  • [75]Nelson CE, Lescure J: The taxonomy and distribution of Myersiella and Synapturanus (Anura: Microhylidae). Herpetologica 1975, 31:389-397.
  • [76]Nelson CE: Mating calls of the Microhylinae: descriptions and phylogenetic and ecological considerations. Herpetologica 1973, 29:163-176.
  • [77]Cruz CAG, Peixoto OL: Notas sobre o girino de Dasypops schrichi Miranda-Ribeiro (Amphiba, Anura, Microhylidae). Rev Bras Biol 1978, 38:297-299.
  • [78]Izecksohn E, Jim J, Albuquerque SL, Mendonça WF: Observações sobre o desenvolvimento e os hábitos de Myersiella subnigra (Miranda-Ribeiro) (Amphibia, Anura, Microhylidae). Arquivos do Museu Nacional 1971, 24:69-73.
  • [79]Menin M, Rodrigues DJ, Lima AP: Clutches, tadpoles and advertisement calls of Synapturanus mirandaribeiroi and S. cf. salseri in Central Amazonia, Brazil. Herpetological Journal 2007, 17:86-91.
  • [80]Nelson CE: Systematic studies of the North American microhylid genus Gastrophryne. J Herpetol 1972, 6:111-137.
  • [81]Cei JM: Amphibians of Argentina. Monitore Zoologico Italiano, N. S. Monographia 1981, 2:1-609.
  • [82]Lavilla EO: The tadpole of Dermatonotus muelleri (Anura: Microhylidae). Bolletino Museum Regionale de Science Naturale Torino 1992, 10:63-71.
  • [83]Vizotto LD: Desenvolvimento de Anuros de região norte-ocidental do Estado de São Paulo. Rec Fac Filos Cienc Lets SJ Rio Preto Zool Especial 1967, 1-161.
  • [84]Williams JD, Gudynas E: Descripcion de la larva de Elachistocleis bicolor (Valenciennes, 1838) (Anura:Microhylidae). Amphibia-Reptilia 1987, 8:225-229.
  • [85]Vera Candioti MF: Morfología larval de Chiasmocleis panamensis, con comentarios sobre la variabilidad morfológica interna en renacuajos de Microhylidae (Anura). Alytes 2006, 24:91-108.
  • [86]Lynch JD: The tadpoles of frogs and toads found in the lowlands of northern Colombia. Revista de la Academia Colombiana de Ciencias 2006, 30:443-457.
  • [87]Kenny JS: The Amphibia of Trinidad. Studies of the Fauna of the Curaçao Caribbean Island 1969, 29:1-78.
  • [88]Orton GL: The unknown tadpole. Turtox News 1946, 24:131-132.
  • [89]Altig R: A key to the tadpoles of the continental United States and Canada. Herpetologica 1970, 26:180-207.
  • [90]Nelson CE, Altig R: Tadpoles of the microhylids Gastrophryne elegans and G. usta. Herpetologica 1972, 28:381-383.
  • [91]Stuart LC: Another new Hypopachus from Guatemala. Proceedings of the Biological Society of Washington 1941, 54:125-128.
  • [92]Stuart LC: Comments on the herpetofauna of the Sierra de Los Cuchumatanes of Guatemala. Occasional Papers of the Museum of Zoology, University of Michigan 1943, 471:1-28.
  • [93]Taylor EH: Tadpoles of Mexican Anura. University of Kansas Science Bulletin 1942, 28:37-55.
  • [94]Savage JM: The geographic distribution of frogs: patterns and predictions. In The Evolutionary Biology of the Anurans. 13th edition. Edited by Vial JL. Columbia, Missouri: Univ. of Missouri Press; 1973:351-454.
  • [95]Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC: Amazonian Amphibian Diversity Is Primarily Derived from Late Miocene Andean Lineages. PLoS Biol 2009, 7:448-461.
  • [96]Coates AG, Obando JA: The geological evolution of the Central American Isthmus. In Evolution and environment in tropical America. Edited by Jackson JBC, Budd AF, Coates AG. Chicago, Illinois: The University of Chicago Press; 1996:21-56.
  • [97]Coates AG, Collins LS, Aubry MP, Berggren WA: The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. The Geological Society of America Bulletin 2004, 116:1327-1344.
  • [98]Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F: Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci 2007, 104:887-892.
  • [99]Ho SYW, Phillips MJ, Cooper A, Drummond AJ: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005, 22:1561-1568.
  • [100]Near TJ, Eytan IR, Dornburg A, Kuhn KL, Moore D, Wainwright PC, Friedman M, Smith WL: Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci 2012, 109:13698-13703.
  • [101]Trueb L: Bones, frogs, and evolution. In Evolutionary biology of Anurans: contemporary research on major problems. Edited by Vial JL. Columbia: University of Missouri Press; 1973:65-132.
  • [102]Wake DB, Wake MH, Specht CD: Homoplasy: From detecting pattern to determine process and mechanism of evolution. Science 2011, 331:1032-1035.
  • [103]Murren CJ: The integrated phenotype. Integrative and Comparative Biology 2012, 52:64-76.
  • [104]Pfenning DW: The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia 1990, 85:101-107.
  • [105]Gomez-Mestre I, Buchholz DR: Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, USA 2006, 103:19021-19026.
  • [106]Leichty AR, Pfenning DW, Jones CD, Pfenning KS: Relaxed genetic constraint is ancestral to the evolution of phenotypic plasticity. Integrative and Comparative Biology 2012, 52:16-30.
  • [107]Pfenning DW, Murphy PJ: How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 2002, 56:1217-28.
  • [108]Wund M, Baker JA, Clancy B, Golub J, Foster SA: A test of the ‘flexible stem’ model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am Nat 2008, 172:449-62.
  • [109]de Sá RO, Trueb L: Osteology, skeletal development, and chondrocranial structure of Hamptophryne boliviana (Anura: Microhylidae). J Morphol 1991, 209:311-330.
  • [110]Fabrezi MS, Quinzio S, Goldberg J, de Sá RO: The Development of Dermatonotus muelleri (Anura: Microhylidae: Gastrophyninae). J Herpetol 2012, 46:363-380.
  • [111]Roelants K, Haas A, Bossuyt F: Anuran radiations and the evolution of tadpole morphospace. Proc Natl Acad Sci USA 2011, 108:8731-8736.
  • [112]Hanken J: Model systems versus outgroups: alternative approaches to the study of head development and evolution. Am Zool 1993, 33:448-456.
  • [113]Emerson SB: The ilio-sacral articulation in frogs: form and function. Biol J Linn Soc 1979, 11:153-168.
  • [114]Emerson SB: Frog postcranial morphology: Identification of a functional complex. Copeia 1982, 3:603-613.
  • [115]Emerson SB: Morphological variation in frog pectoral girdle: testing alternatives to a traditional adaptive explanation. Evolution 1984, 38:376-388.
  • [116]Pfenning DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP: Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 2010, 25:459-467.
  • [117]West-Eberhard MJ: Phenotypic plasticity and the origin of diversity. Annual Review of Ecology and Systematics 1989, 20:249-78.
  • [118]West-Eberhard MJ: Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, USA 2005, 102:6543-49.
  • [119]Schlichting CD: The role of phenotypic plasticity in diversification. In Phenotypic Plasticity: functional and conceptual approaches. Edited by DeWitt TJ, Scheiner SM. New York: Oxford University Press; 2004:191-200.
  • [120]Whitman DW, Agrawal AA: What is phenotypic plasticity and why is it important? In Phenotypic Plasticity of Insects. Edited by Whitman DW, Ananthakrishnan TN. Science Publishers; 2009:1-63.
  • [121]Vitt LJ, Caldwell JP: Herpetology. 3rd edition. Academic; 2009:698.
  • [122]Pigliucci M: Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: Johns Hopkins University Press; 2001.
  • [123]Nijhout HF, German RZ: Developmental causes of allometry: New models and implications for phenotypic plasticity and evolution. Integrative and Comparative Biology 2012, 52:43-52.
  • [124]Handrigan GR, Wassersug RJ: The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biol Rev 2007, 82:1-25.
  • [125]Love AC: Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy 2003, 18:309-345.
  • [126]Blommers-Schlösser RMA: Chromosomal analysis of twelve species of Microhylidae (Anura) from Madagascar. Genetica 1976, 46:199-210.
  • [127]Kuramoto M: A list of chromosome numbers of anuran amphibians. Bulletin Fukuoka University Education 1990, 39:83-127.
  • [128]Bogart JP, Nelson CE: Evolutionary implications from karyotypic analysis of frogs of the families Microhylidae and Rhinophrynidae. Herpetologica 1976, 32:199-208.
  • [129]Mahony M, Donnellan SC, Alpine K: Karyotypes of Australo-Papuan microhylid frogs (Anura: Microhylidae). Herpetologica 1992, 48:184-192.
  • [130]Kasahara S, Haddad CFB: Karytotypes of two Brazilian microhylid frogs of the genus Chiasmocleis, including a new case of polyploidy. J Herpetol 1997, 31:139-142.
  文献评价指标  
  下载次数:57次 浏览次数:26次