期刊论文详细信息
BMC Genomics
Comparative transcriptome analysis of eggplant (Solanum melongena L.) and turkey berry (Solanum torvum Sw.): phylogenomics and disease resistance analysis
Lin-Bao Xue2  Xue-Hao Chen2  Zhi-Wen Wang1  Yan Ma2  Cao Deng1  Yu-Fu Cheng2  Xu Yang2 
[1] PubBio-Tech Services Corporation, Wuhan 430070, China;College of Horticulture and Plant Protection of Yangzhou University, Yangzhou 225009, China
关键词: Plant resistance genes;    Evolution;    Comparative transcriptomics;    Solanum melongena L.;    Solanum torvum Sw.;   
Others  :  1216760
DOI  :  10.1186/1471-2164-15-412
 received in 2014-02-17, accepted in 2014-05-22,  发布年份 2014
PDF
【 摘 要 】

Background

Eggplant (Solanum melongena L.) and turkey berry (S. torvum Sw.), a wild ally of eggplant with promising multi-disease resistance traits, are of great economic, medicinal and genetic importance, but genomic resources for these species are lacking. In the present study, we sequenced the transcriptomes of eggplant and turkey berry to accelerate research on these two non-model species.

Results

We built comprehensive, high-quality de novo transcriptome assemblies of the two Leptostemonum clade Solanum species from short-read RNA-Sequencing data. We obtained 34,174 unigenes for eggplant and 38,185 unigenes for turkey berry. Functional annotations based on sequence similarity to known plant datasets revealed a distribution of functional categories for both species very similar to that of tomato. Comparison of eggplant, turkey berry and another 11 plant proteomes resulted in 276 high-confidence single-copy orthologous groups, reasonable phylogenetic tree inferences and reliable divergence time estimations. From these data, it appears that eggplant and its wild Leptostemonum clade relative turkey berry split from each other in the late Miocene, ~6.66 million years ago, and that Leptostemonum split from the Potatoe clade in the middle Miocene, ~15.75 million years ago. Furthermore, 621 and 815 plant resistance genes were identified in eggplant and turkey berry respectively, indicating the variation of disease resistance genes between them.

Conclusions

This study provides a comprehensive transcriptome resource for two Leptostemonum clade Solanum species and insight into their evolutionary history and biological characteristics. These resources establish a foundation for further investigations of eggplant biology and for agricultural improvement of this important vegetable. More generally, we show that RNA-Seq is a fast, reliable and cost-effective method for assessing genome evolution in non-model species.

【 授权许可】

   
2014 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702070946150.pdf 1232KB PDF download
Figure 6. 56KB Image download
Figure 5. 42KB Image download
Figure 4. 41KB Image download
Figure 3. 61KB Image download
Figure 2. 45KB Image download
Figure 1. 150KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J: Genome sequence and analysis of the tuber crop potato. Nature 2011, 475(7355):189-195.
  • [2]Zouine M, Latché A, Rousseau C, Regad F, Pech J-C, Philippot M, Bouzayen M, Delalande C, Frasse P, Schiex T: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485:635-641.
  • [3]Knapp S, Vorontsova MS, Prohens J: Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS One 2013, 8(2):e57039.
  • [4]Daunay M, Lester R, Gebhardt C, Hennart J, Jahn M, Frary A, Doganlar S: Genetic Resources of Eggplant (Solanum melongena L.) and Allied Species: a New Challenge for Molecular Geneticists and Eggplant Breeders. Nijmegan, The Netherlands: Nijmegen University Press; 2001.
  • [5]Arumuganathan K, Earle E: Nuclear DNA content of some important plant species. Plant Mol Biol Rep 1991, 9(3):208-218.
  • [6]Collonnier C, Fock I, Kashyap V, Rotino G, Daunay M, Lian Y, Mariska I, Rajam M, Servaes A, Ducreux G: Applications of biotechnology in eggplant. Plant Cell Tiss Org Cult 2001, 65(2):91-107.
  • [7]Jaiswal B: Solanum torvum: a review of its traditional uses, phytochemistry and pharmacology. International Journal of Pharma and Bio Sciences 2012., 3(4)
  • [8]Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S: Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 2010, 61(2):423-437.
  • [9]Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D: Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 2005, 168(2):319-327.
  • [10]Garibaldi A, Minuto A, Gullino M: Verticillium wilt incited by Verticillium dahliae in eggplant grafted on Solanum torvum in Italy. Plant Dis 2005, 89(7):777.
  • [11]Daunay M, Lester R, Laterrot H: The use of wild species for the genetic improvement of Brinjal eggplant (Solanum melongena) and tomato (Lycopersicon esculentum). Solanaceae III: Taxonomy, Chemistry, Evolution 1991, 27:389-413.
  • [12]Guri A, Sink K: Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum. Theor Appl Genet 1988, 76(4):490-496.
  • [13]Van Eck J, Snyder A: Eggplant (Solanum melongena L.). In Agrobacterium Protocols. New Jersey: Humana Press; 2006:439-448.
  • [14]Levin RA, Myers NR, Bohs L: Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 2006, 93(1):157-169.
  • [15]Fukuoka H, Yamaguchi H, Nunome T, Negoro S, Miyatake K, Ohyama A: Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene 2010, 450(1):76-84.
  • [16]Bagnaresi P, Sala T, Irdani T, Scotto C, Lamontanara A, Beretta M, Rotino G, Sestili S, Cattivelli L, Sabatini E: Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics 2013, 14(1):540. BioMed Central Full Text
  • [17]Barker MS, Vogel H, Schranz ME: Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 2009, 1:391.
  • [18]McKain MR, Wickett N, Zhang Y, Ayyampalayam S, McCombie WR, Chase MW, Pires JC, Leebens-Mack J: Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot 2012, 99(2):397-406.
  • [19]Wen J, Xiong Z, Nie Z-L, Mao L, Zhu Y, Kan X-Z, Ickert-Bond SM, Gerrath J, Zimmer EA, Fang X-D: Transcriptome sequences resolve deep relationships of the grape family. PLoS One 2013, 8(9):e74394.
  • [20]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [21]Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ: Using OrthoMCL to Assign Proteins to OrthoMCL‒DB Groups or to Cluster Proteomes Into New Ortholog Groups. Curr Protoc Bioinformatics 2011, 35:6.12. 11-16.12. 19.
  • [22]Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 2012, 44(10):1098-1103.
  • [23]D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M: The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488(7410):213-217.
  • [24]Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K: The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 2013, 45(4):456-461.
  • [25]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [26]Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Soltis P, Stevens P: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 2009, 161(2):105-121.
  • [27]Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the beginning of incongruence? Trends Genet 2006, 22(4):225-231.
  • [28]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [29]Rannala B, Yang Z: Inferring speciation times under an episodic molecular clock. Syst Biol 2007, 56(3):453-466.
  • [30]Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 2006, 22(23):2971-2972.
  • [31]Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley SD: Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 2008, 180(1):391-408.
  • [32]Fei J, Chai Y, Wang J, Lin J, Sun X, Sun C, Zuo K, Tang K: cDNA cloning and characterization of the Ve homologue gene StVe from Solanum torvum Swartz. Mitochondrial DNA 2004, 15(2):88-95.
  • [33]Sanseverino W, Hermoso A, D’Alessandro R, Vlasova A, Andolfo G, Frusciante L, Lowy E, Roma G, Ercolano MR: PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucleic Acids Res 2013, 41(D1):D1167-D1171.
  • [34]van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL: Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 2007, 45:43-72.
  • [35]Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR: PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 2010, 38(suppl 1):D814-D821.
  • [36]Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW: Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell Online 2003, 15(4):809-834.
  • [37]Leister D: Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 2004, 20(3):116-122.
  • [38]Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H: The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 2013, 23(2):396-408.
  • [39]Han X-J, Wang Y-D, Chen Y-C, Lin L-Y, Wu Q-K: Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba. PLoS One 2013, 8(10):e76890.
  • [40]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14(4):R36. BioMed Central Full Text
  • [41]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [42]Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31(1):365-370.
  • [43]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(D1):D109-D114.
  • [44]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36(suppl 1):D480-D484.
  • [45]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4(1):41. BioMed Central Full Text
  • [46]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [47]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT: Gene Ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25-29.
  • [48]Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. ISMB 1999, 1999:138-148.
  • [49]Birney E, Clamp M, Durbin R: GeneWise and genomewise. Genome Res 2004, 14(5):988-995.
  • [50]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [51]Chaw S-M, Chang C-C, Chen H-L, Li W-H: Dating the monocot–dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 2004, 58(4):424-441.
  • [52]Crepet WL, Nixon KC, Gandolfo MA: Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 2004, 91(10):1666-1682.
  • [53]de Sa MM, Drouin G: Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 1996, 13(9):1198-1212.
  文献评价指标  
  下载次数:8次 浏览次数:2次