期刊论文详细信息
BMC Evolutionary Biology
Molecular adaptation and resilience of the insect’s nuclear receptor USP
François Bonneton4  Vincent Laudet4  Xavier Belles3  Frederic Brunet4  Thomas Iwema1  David Martin3  Oscar Maestro3  Jean-Luc Da Lage2  Arnaud Chaumot5 
[1] Groupe de recherche "immunopathologie et maladies infectieuses (GRI), Universite de la Réunion, Centre CYROI, Cyclotron Réunion Ocean Indien, Sainte Clotilde Ile de la Réunion, 97491, France;UPR9034, Laboratoire Evolution, génomes et spéciation (LEGS), CNRS, Gif sur Yvette, 91198, France;Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim de la Barceloneta 37, Barcelona, 08003, Spain;Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Université Lyon 1; CNRS; INRA; Ecole Normale Supérieure de Lyon, 32-34 avenue Tony Garnier, Lyon, 69007, France;Irstea, UR MALY, Lyon, F-69336, France
关键词: Selection;    Mecopterida;    USP;    ECR;    Ecdysone receptor;    Nuclear receptors;   
Others  :  1140170
DOI  :  10.1186/1471-2148-12-199
 received in 2012-06-04, accepted in 2012-09-25,  发布年份 2012
PDF
【 摘 要 】

Background

The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1) and USP (NR2B4), was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD) of USP during evolution of Mecopterida.

Results

We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP) underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera) diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation.

Conclusions

In order to explain the episodic mode of evolution of USP, we propose a model in which the molecular adaptation of this protein is seen as a process of resilience for the maintenance of the ecdysone receptor functionality.

【 授权许可】

   
2012 Chaumot et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324122830615.pdf 1392KB PDF download
Figure 5. 100KB Image download
Figure 4. 90KB Image download
Figure 3. 110KB Image download
Figure 2. 28KB Image download
Figure 1. 159KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wagner A: Robustness, evolvability, and neutrality. FEBS Lett 2005, 579(8):1772-1778.
  • [2]Henrich VC: The ecdysteroid receptor. In Comprehensive Molecular Insect Science. Edited by Gilbert LI, Iatrou K, Gill SS. Oxford: Elsevier; 2005:243-285. vol. 3
  • [3]Spindler KD, Honl C, Tremmel C, Braun S, Ruff H, Spindler-Barth M: Ecdysteroid hormone action. Cell Mol Life Sci 2009, 66(24):3837-3850.
  • [4]Bonneton F, Zelus D, Iwema T, Robinson-Rechavi M, Laudet V: Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between ECR and USP-RXR. Mol Biol Evol 2003, 20(4):541-553.
  • [5]Bonneton F, Brunet FG, Kathirithamby J, Laudet V: The rapid divergence of the ecdysone receptor is a synapomorphy for Mecopterida that clarifies the Strepsiptera problem. Insect Mol Biol 2006, 15(3):351-362.
  • [6]Bonneton F, Chaumot A, Laudet V: Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. Insect Biochem Mol Biol 2008, 38(4):416-429.
  • [7]Iwema T, Billas IM, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D: Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 2007, 26(16):3770-3782.
  • [8]Iwema T, Chaumot A, Studer RA, Robinson-Rechavi M, Billas IML, Moras D, Laudet V, Bonneton F: Structural and Evolutionary Innovation of the Heterodimerization Interface between USP and the Ecdysone Receptor ECR in Insects. Mol Biol Evol 2009, 26(4):753-768.
  • [9]Philippe H, Casane D, Gribaldo S, Lopez P, Meunier J: Heterotachy and functional shift in protein evolution. IUBMB Life 2003, 55(4–5):257-265.
  • [10]Anisimova M, Liberles DA: The quest for natural selection in the age of comparative genomics. Heredity 2007, 99(6):567-579.
  • [11]Hughes AL: Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 2007, 99(4):364-373.
  • [12]Studer RA, Robinson-Rechavi M: Evidence for an episodic model of protein sequence evolution. Biochem Soc Trans 2009, 37(Pt 4):783-786.
  • [13]Studer RA, Penel S, Duret L, Robinson-Rechavi M: Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 2008, 18(9):1393-1402.
  • [14]Baer CF, Miyamoto MM, Denver DR: Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007, 8(8):619-631.
  • [15]Galtier N, Duret L: Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet 2007, 23(6):273-277.
  • [16]Tamura K, Subramanian S, Kumar S: Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 2004, 21(1):36-44.
  • [17]Angelini DR, Jockusch EL: Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers. Mol Phylogenet Evol 2008, 46(1):127-141.
  • [18]Grandcolas P, D’haese C: The phylogeny of cockroach families: is the current molecular hypothesis robust? Cladistics-the Int J Willi Hennig Soc 2001, 17(1):48-55.
  • [19]Mukha D, Wiegmann BM, Schal C: Evolution and phylogenetic information content of the ribosomal DNA repeat unit in the Blattodea (Insecta). Insect Biochem Mol Biol 2002, 32(9):951-960.
  • [20]Gaunt MW, Miles MA: An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 2002, 19(5):748-761.
  • [21]Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.
  • [22]Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000, 15(12):496-503.
  • [23]Zhang J, Hu X, Lazar MA: A novel role for helix 12 of retinoid X receptor in regulating repression. Mol Cell Biol 1999, 19(9):6448-6457.
  • [24]Marimuthu A, Feng W, Tagami T, Nguyen H, Jameson JL, Fletterick RJ, Baxter JD, West BL: TR surfaces and conformations required to bind nuclear receptor corepressor. Mol Endocrinol 2002, 16(2):271-286.
  • [25]Billas IML, Moulinier L, Rochel N, Moras D: Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 2001, 276(10):7465-7474.
  • [26]Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW: The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A 2001, 98(4):1549-1554.
  • [27]Hu X, Cherbas L, Cherbas P: Transcription activation by the ecdysone receptor (EcR/USP): identification of activation functions. Mol Endocrinol 2003, 17(4):716-731.
  • [28]Carmichael JA, Lawrence MC, Graham LD, Pilling PA, Epa VC, Noyce L, Lovrecz G, Winkler DA, Pawlak-Skrzecz A, Eaton RE, et al.: The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain - Comparison with a Lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J Biol Chem 2005, 280(23):22258-22269.
  • [29]Billas IM, Iwema T, Garnier JM, Mitschler A, Rochel N, Moras D: Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 2003, 426(6962):91-96.
  • [30]Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 2005, 22(12):2472-2479.
  • [31]Kostka D, Hubisz MJ, Siepel A, Pollard KS: The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol 2012, 29(3):1047-1057.
  • [32]Clare EL, Kerr KC, von Konigslow TE, Wilson JJ, Hebert PD: Diagnosing mitochondrial DNA diversity: applications of a sentinel gene approach. J Mol Evol 2008, 66(4):362-367.
  • [33]Krasowski MD, Yasuda K, Hagey LR, Schuetz EG: Evolutionary selection across the nuclear hormone receptor superfamily with a focus on the NR1I subfamily (vitamin D, pregnane X, and constitutive androstane receptors). Nucl Recept 2005, 3:2. BioMed Central Full Text
  • [34]Philip S, Castro LF, da Fonseca RR, Reis-Henriques MA, Vasconcelos V, Santos MM, Antunes A: Adaptive evolution of the Retinoid X receptor in vertebrates. Genomics 2012, 99:81-89.
  • [35]Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA: Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res 2004, 14(4):580-590.
  • [36]Pal C, Papp B, Lercher MJ: An integrated view of protein evolution. Nat Rev Genet 2006, 7(5):337-348.
  • [37]Perissi V, Rosenfeld MG: Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 2005, 6(7):542-554.
  • [38]Raviscioni M, He Q, Salicru EM, Smith CL, Lichtarge O: Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors. Proteins 2006, 64(4):1046-1057.
  • [39]Nowickyj SM, Chithalen JV, Cameron D, Tyshenko MG, Petkovich M, Wyatt GR, Jones G, Walker VK: Locust retinoid X receptors: 9-Cis-retinoic acid in embryos from a primitive insect. Proc Natl Acad Sci U S A 2008, 105(28):9540-9545.
  • [40]Arakawa T, Ejima D, Kita Y, Tsumoto K: Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta 2006, 1764(11):1677-1687.
  • [41]Nagl SB, Freeman J, Smith TF: Evolutionary constraint networks in ligand-binding domains: an information-theoretic approach. Pac Symp Biocomput 1999, 4:90-101.
  • [42]Minakuchi C, Ogura T, Miyagawa H, Nakagawa Y: Effects of the structures of ecdysone receptor (EcR) and ultraspiracle (USP) on the ligand-binding activity of the EcR/USP heterodimer. J Pestic Sci 2007, 32(4):379-384.
  • [43]Nakagawa Y, Sakai A, Magata F, Ogura T, Miyashita M, Miyagawa H: Molecular cloning of the ecdysone receptor and the retinoid X receptor from the scorpion Liocheles australasiae. Febs J 2007, 274(23):6191-6203.
  • [44]Ogura T, Minakuchi C, Nakagawa Y, Smagghe G, Miyagawa H: Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspiracle from the Colorado potato beetle Leptinotarsa decemlineata. Febs Journal 2005, 272(16):4114-4128.
  • [45]Henrich VC: The ecdysteroid receptor. In Insect endocrinology. Edited by Gilbert LI. Amsterdam, Boston: Academic Press, Elsevier; 2012:177-218.
  • [46]Li C, Schwabe JWR, Banayo E, Evans RM: Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc Natl Acad Sci U S A 1997, 94(6):2278-2283.
  • [47]Graham LD, Pilling PA, Eaton RE, Gorman JJ, Braybrook C, Hannan GN, Pawlak-Skrzecz A, Noyce L, Lovrecz GO, Lu L, et al.: Purification and characterization of recombinant ligand-binding domains from the ecdysone receptors of four pest insects. Protein Expr Purif 2007, 53(2):309-324.
  • [48]Lezzi M, Bergman T, Henrich VC, Vogtli M, Fromel C, Grebe M, Przibilla S, Spindler-Barth M: Ligand-induced heterodimerization between the ligand binding domains of the Drosophila ecdysteroid receptor and ultraspiracle. Eur J Biochem 2002, 269(13):3237-3245.
  • [49]Vivat-Hannah V, Bourguet W, Gottardis M, Gronemeyer H: Separation of retinoid X receptor homo- and heterodimerization functions. Mol Cell Biol 2003, 23(21):7678-7688.
  • [50]Hult EF, Tobe SS, Chang BS: Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 2011, 6(8):e23416.
  • [51]Dover GA, Strachan T, Coen ES, Brown SD: Molecular drive. Science 1982, 218(4577):1069.
  • [52]Dover GA: Evolution of genetic redundancy for advanced players. Curr Opin Genet Dev 1993, 3(6):902-910.
  • [53]Krasowski MD, Yasuda K, Hagey LR, Schuetz EG: Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts. Mol Endocrinol 2005, 19(7):1720-1739.
  • [54]Shyu C, Brown CJ, Ytreberg FM: Computational study of evolutionary selection pressure on rainbow trout estrogen receptors. PLoS One 2010, 5(3):e9392.
  • [55]Krasowski MD, Ni A, Hagey LR, Ekins S: Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol Cell Endocrinol 2011, 334(1–2):39-48.
  • [56]Domazet-Loso T, Tautz D: An evolutionary analysis of orphan genes in Drosophila. Genome Res 2003, 13(10):2213-2219.
  • [57]Savard J, Tautz D, Lercher MJ: Genome-wide acceleration of protein evolution in flies (Diptera). BMC Evol Biol 2006, 6:7. BioMed Central Full Text
  • [58]Bonneton F, Laudet V: Evolution of nuclear receptors in insects. In Insect endocrinology. Edited by Gilbert LI. Amsterdam, Boston: Academic Press; Elsevier; 2012:219.
  • [59]Kondrashov AS, Sunyaev S, Kondrashov FA: Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci U S A 2002, 99(23):14878-14883.
  • [60]Gloor G, Engels W: Single fly DNA preps for PCR. Drosophila Information Service 1992, 71:148-149.
  • [61]Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, et al.: Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450(7167):203-218.
  • [62]Cruz J, Martin D, Pascual N, Maestro JL, Piulachs MD, Belles X: Quantity does matter. Juvenile hormone and the onset of vitellogenesis in the German cockroach. Insect Biochem Mol Biol 2003, 33(12):1219-1225.
  • [63]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [64]Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996, 12(6):543-548.
  • [65]Yeates DK, Wiegmann BM: Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol 1999, 44:397-428.
  • [66]Remsen J, O’Grady P: Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Mol Phylogenet Evol 2002, 24(2):249-264.
  • [67]Weller SJ, Friedlander TP, Martin JA, Pashley DP: Phylogenetic studies of ribosomal RNA variation in higher moths and butterflies (Lepidoptera: Ditrysia). Mol Phylogenet Evol 1992, 1(4):312-337.
  • [68]Regier JC, Mitter C, Friedlander TP, Peigler RS: Re: Phylogenetic relationships in Sphingidae (Insecta: Lepidoptera): initial evidence from two nuclear genes. Mol Phylogenet Evol 2001, 20(2):311-316.
  • [69]Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T: Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 2003, 20(6):907-913.
  • [70]Kristensen NP: Phylogeny of insect orders. Annu Rev Entomol 1981, 26:135-157.
  • [71]Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC: The streptisera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 1997, 46:1-68.
  • [72]Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK: Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 2009, 7:34. BioMed Central Full Text
  • [73]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.
  • [74]Yang Z, Wong WS, Nielsen R: Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22(4):1107-1118.
  文献评价指标  
  下载次数:49次 浏览次数:47次