期刊论文详细信息
BMC Immunology
Murine IL-17+ Vγ4 T lymphocytes accumulate in the lungs and play a protective role during severe sepsis
Carmen Penido4  Claudia Farias Benjamim5  Maria das Graças Henriques4  José Mengel2  Richard Hemmi Valente6  Victor Ugarte Bornstein3  Catarina Bastos Trigo de Negreiros1  Maria Fernanda de Souza Costa4 
[1] Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro CEP 21041-250, RJ, Brazil;Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil;Mount Sinai School of Medicine, New York City, USA;Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil;Laboratório de Inflamação, Estresse Oxidativo e Câncer, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
关键词: Sepsis;    Chemokines;    Interleukin-17;    γδ T cell;   
Others  :  1210274
DOI  :  10.1186/s12865-015-0098-8
 received in 2014-11-18, accepted in 2015-05-19,  发布年份 2015
PDF
【 摘 要 】

Background

Lung inflammation is a major consequence of the systemic inflammatory response caused by severe sepsis. Increased migration of γδ T lymphocytes into the lungs has been previously demonstrated during experimental sepsis; however, the involvement of the γδ T cell subtype Vγ4 has not been previously described.

Methods

Severe sepsis was induced by cecal ligation and puncture (CLP; 9 punctures, 21G needle) in male C57BL/6 mice. γδ and Vγ4 T lymphocyte depletion was performed by 3A10 and UC3-10A6 mAb i.p. administration, respectively. Lung infiltrating T lymphocytes, IL-17 production and mortality rate were evaluated.

Results

Severe sepsis induced by CLP in C57BL/6 mice led to an intense lung inflammatory response, marked by the accumulation of γδ T lymphocytes (comprising the Vγ4 subtype). γδ T lymphocytes present in the lungs of CLP mice were likely to be originated from peripheral lymphoid organs and migrated towards CCL2, CCL3 and CCL5, which were highly produced in response to CLP-induced sepsis. Increased expression of CD25 by Vγ4 T lymphocytes was observed in spleen earlier than that by αβ T cells, suggesting the early activation of Vγ4 T cells. The Vγ4 T lymphocyte subset predominated among the IL-17+ cell populations present in the lungs of CLP mice (unlike Vγ1 and αβ T lymphocytes) and was strongly biased toward IL-17 rather than toward IFN-γ production. Accordingly, the in vivo administration of anti-Vγ4 mAb abrogated CLP-induced IL-17 production in mouse lungs. Furthermore, anti-Vγ4 mAb treatment accelerated mortality rate in severe septic mice, demonstrating that Vγ4 T lymphocyte play a beneficial role in host defense.

Conclusions

Overall, our findings provide evidence that early-activated Vγ4 T lymphocytes are the main responsible cells for IL-17 production in inflamed lungs during the course of sepsis and delay mortality of septic mice.

【 授权许可】

   
2015 de Souza Costa et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150605021754344.pdf 1476KB PDF download
Fig. 5. 53KB Image download
Fig. 4. 54KB Image download
Fig. 3. 70KB Image download
Fig. 2. 42KB Image download
Fig. 1. 44KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000; 342(18):1334-49.
  • [2]Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003; 348(2):138-50.
  • [3]Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol Lung Cell Mol Physiol. 2012; 303(5):L355-63.
  • [4]Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014; 5(1):4-11.
  • [5]London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK et al.. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010; 2(23):23ra19.
  • [6]Benjamim CF, Hogaboam CM, Lukacs NW, Kunkel SL. Septic mice are susceptible to pulmonary aspergillosis. Am J Pathol. 2003; 163(6):2605-17.
  • [7]Hirsh M, Dyugovskaya L, Kaplan V, Krausz MM. Response of lung gammadelta T cells to experimental sepsis in mice. Immunology. 2004; 112(1):153-60.
  • [8]Hirsh MI, Hashiguchi N, Chen Y, Yip L, Junger WG. Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammadeltaT cell-mediated killing. Eur J Immunol. 2006; 36(3):712-21.
  • [9]Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013; 13(2):88-100.
  • [10]Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002; 2(5):336-45.
  • [11]Nakasone C, Yamamoto N, Nakamatsu M, Kinjo T, Miyagi K, Uezu K et al.. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect. 2007; 9(3):251-8.
  • [12]Kirby AC, Newton DJ, Carding SR, Kaye PM. Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection. Eur J Immunol. 2007; 37(12):3404-13.
  • [13]Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K et al.. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010; 184(8):4414-22.
  • [14]Chung CS, Watkins L, Funches A, Lomas-Neira J, Cioffi WG, Ayala A. Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis. Am J Physiol Regul Integr Comp Physiol. 2006; 291(5):R1338-43.
  • [15]Costa MF, Bornstein VU, Candea AL, Henriques-Pons A, Henriques MG, Penido C. CCL25 induces alpha(4)beta(7) integrin-dependent migration of IL-17(+) gammadelta T lymphocytes during an allergic reaction. Eur J Immunol. 2012; 42(5):1250-60.
  • [16]Lanca T, Costa MF, Goncalves-Sousa N, Rei M, Grosso AR, Penido C et al.. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic gammadelta T lymphocytes to tumor beds. J Immunol. 2013; 190(12):6673-80.
  • [17]Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M et al.. Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood. 2004; 103(6):2205-13.
  • [18]Hedges JF, Lubick KJ, Jutila MA. Gamma delta T cells respond directly to pathogen-associated molecular patterns. J Immunol. 2005; 174(10):6045-53.
  • [19]Welsh KJ, Risin SA, Actor JK, Hunter RL. Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin Dev Immunol. 2011; 2011:307631.
  • [20]Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT et al.. CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol. 2013; 14(11):1137-45.
  • [21]Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013; 31:413-41.
  • [22]Silva-Santos B. Gammadelta cells making IL-17. Blood. 2011; 118(1):3-5.
  • [23]Ribot JC, de Barros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ et al.. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009; 10(4):427-36.
  • [24]Wu P, Wu D, Ni C, Ye J, Chen W, Hu G et al.. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014; 40(5):785-800.
  • [25]Haas JD, González FH, Schmitz S, Chennupati V, Föhse L, Kremmer E et al.. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur J Immunol. 2009; 39(12):3488-97.
  • [26]Kong X, Sun R, Chen Y, Wei H, Tian Z. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol. 2014; 193(4):1645-53.
  • [27]Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010; 10(7):467-78.
  • [28]Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol. 2007; 179(8):5576-83.
  • [29]Murdoch JR, Lloyd CM. Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17-producing {gamma}{delta}T cells. Am J Respir Crit Care Med. 2010; 182(4):464-76.
  • [30]Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X et al.. IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 2014; 74(7):1969-82.
  • [31]Enoh VT, Lin SH, Lin CY, Toliver-Kinsky T, Murphey ED, Varma TK et al.. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture. Shock. 2007; 27(5):507-19.
  • [32]Tschop J, Martignoni A, Goetzman HS, Choi LG, Wang Q, Noel JG et al.. Gammadelta T cells mitigate the organ injury and mortality of sepsis. J Leukoc Biol. 2008; 83(3):581-8.
  • [33]Flierl MA, Rittirsch D, Gao H, Hoesel LM, Nadeau BA, Day DE et al.. Adverse functions of IL-17A in experimental sepsis. Faseb j. 2008; 22(7):2198-205.
  • [34]Xu R, Wang R, Han G, Wang J, Chen G, Wang L et al.. Complement C5a regulates IL-17 by affecting the crosstalk between DC and gammadelta T cells in CLP-induced sepsis. Eur J Immunol. 2010; 40(4):1079-88.
  • [35]Kasten KR, Prakash PS, Unsinger J, Goetzman HS, England LG, Cave CM et al.. Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of sepsis. Infect Immun. 2010; 78(11):4714-22.
  • [36]Rice L, Orlow D, Ceonzo K, Stahl GL, Tzianabos AO, Wada H et al.. CpG oligodeoxynucleotide protection in polymicrobial sepsis is dependent on interleukin-17. J Infect Dis. 2005; 191(8):1368-76.
  • [37]Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA, Auxiliadora-Martins M et al.. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010; 16(6):708-12.
  • [38]Han G, Geng S, Li Y, Chen G, Wang R, Li X et al.. GammadeltaT-cell function in sepsis is modulated by C5a receptor signalling. Immunology. 2011; 133(3):340-9.
  • [39]Condotta SA, Cabrera-Perez J, Badovinac VP, Griffith TS. T-cell-mediated immunity and the role of TRAIL in sepsis-induced immunosuppression. Crit Rev Immunol. 2013; 33(1):23-40.
  • [40]Matsushima A, Ogura H, Fujita K, Koh T, Tanaka H, Sumi Y et al.. Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome. Shock. 2004; 22(1):11-5.
  • [41]Venet F, Bohe J, Debard AL, Bienvenu J, Lepape A, Monneret G. Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock. Crit Care Med. 2005; 33(12):2836-40.
  • [42]Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S et al.. Chemokine receptor CCR6-dependent accumulation of gammadelta T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology. 2014; 59(2):630-42.
  • [43]Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol. 2002; 168(10):4920-9.
  • [44]Penido C, Costa MF, Souza MC, Costa KA, Candea AL, Benjamim CF et al.. Involvement of CC chemokines in gammadelta T lymphocyte trafficking during allergic inflammation: the role of CCL2/CCR2 pathway. Int Immunol. 2008; 20(1):129-39.
  • [45]Penido C, Vieira-de-Abreu A, Bozza MT, Castro-Faria-Neto HC, Bozza PT. Role of monocyte chemotactic protein-1/CC chemokine ligand 2 on gamma delta T lymphocyte trafficking during inflammation induced by lipopolysaccharide or Mycobacterium bovis bacille Calmette-Guerin. J Immunol. 2003; 171(12):6788-94.
  • [46]Roth SJ, Diacovo TG, Brenner MB, Rosat JP, Buccola J, Morita CT et al.. Transendothelial chemotaxis of human alpha/beta and gamma/delta T lymphocytes to chemokines. Eur J Immunol. 1998; 28(1):104-13.
  • [47]Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB et al.. Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood. 2003; 102(10):3693-701.
  • [48]Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol. 2008; 9(9):970-80.
  • [49]Rei M, Gonçalves-Sousa N, Lança T, Thompson RG, Mensurado S, Balkwill FR et al.. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A. 2014; 111(34):E3562-70.
  • [50]Andreu-Ballester JC, Tormo-Calandin C, Garcia-Ballesteros C, Perez-Griera J, Amigo V, Almela-Quilis A et al.. Association of gammadelta T cells with disease severity and mortality in septic patients. Clin Vaccine Immunol. 2013; 20(5):738-46.
  • [51]Li J, Zhang Y, Lou J, Zhu J, He M, Deng X et al.. Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One. 2012; 7(10):e46506.
  • [52]Inoue S, Niikura M, Takeo S, Mineo S, Kawakami Y, Uchida A et al.. Enhancement of dendritic cell activation via CD40 ligand-expressing γδ T cells is responsible for protective immunity to Plasmodium parasites. Proc Natl Acad Sci U S A. 2012; 109(30):12129-34.
  • [53]Braun RK, Ferrick C, Neubauer P, Sjoding M, Sterner-Kock A, Kock M et al.. IL-17 producing gammadelta T cells are required for a controlled inflammatory response after bleomycin-induced lung injury. Inflammation. 2008; 31(3):167-79.
  • [54]Li Z, Burns AR, Miller SB, Smith CW. CCL20, γδ T cells, and IL-22 in corneal epithelial healing. FASEB J. 2011; 25(8):2659-68.
  • [55]Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP et al.. Interleukin 17-producing γδT cells promote hepatic regeneration in mice. Gastroenterology. 2014; 147(2):473-84.
  • [56]Cauvi DM, Williams MR, Bermudez JA, Armijo G, De Maio A. Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis. Shock. 2014; 42(3):246-55.
  • [57]Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care (New Rochelle). 2013; 2(7):379-88.
  • [58]Huppler AR, Conti HR, Hernández-Santos N, Darville T, Biswas PS, Gaffen SL. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J Immunol. 2014; 192(4):1745-52.
  • [59]Li Z, Burns AR, Han L, Rumbaut RE, Smith CW. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. Am J Pathol. 2011; 178(3):1106-16.
  • [60]Itohara S, Nakanishi N, Kanagawa O, Kubo R, Tonegawa S. Monoclonal antibodies specific to native murine T-cell receptor gamma delta: analysis of gamma delta T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci U S A. 1989; 86(13):5094-8.
  • [61]Dent AL, Matis LA, Hooshmand F, Widacki SM, Bluestone JA, Hedrick SM. Self-reactive gamma delta T cells are eliminated in the thymus. Nature. 1990; 343(6260):714-9.
  文献评价指标  
  下载次数:36次 浏览次数:8次