期刊论文详细信息
BioMedical Engineering OnLine
The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management
Akos Szlavecz2  Yeong Shiong Chiew4  Daniel Redmond4  Alex Beatson4  Daniel Glassenbury4  Simon Corbett4  Vincent Major4  Christopher Pretty4  Geoffrey M Shaw1  Balazs Benyo2  Thomas Desaive3  J Geoffrey Chase4 
[1] Department of Intensive Care, Christchurch Hospital, Canterbury, New Zealand
[2] Department of Control Engineering and Information, Budapest University of Technology and Economics, Budapest, Hungary
[3] GIGA Cardiovascular Science, University of Liege, Liege, Belgium
[4] Centre for BioEngineering, University of Canterbury, Canterbury, New Zealand
关键词: Positive End-Expiratory Pressure (PEEP);    Decision Making;    Monitoring;    Respiratory Mechanics;    Software;    Mechanical Ventilation;   
Others  :  1084297
DOI  :  10.1186/1475-925X-13-140
 received in 2014-07-09, accepted in 2014-09-20,  发布年份 2014
PDF
【 摘 要 】

Background

Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment.

Implementation

CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee.

Results and discussion

Using CURE Soft, patient’s respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient’s respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP.

Conclusion

CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

【 授权许可】

   
2014 Szlavecz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113160427701.pdf 1526KB PDF download
Figure 8. 51KB Image download
Figure 7. 60KB Image download
Figure 6. 62KB Image download
Figure 5. 38KB Image download
Figure 4. 101KB Image download
Figure 3. 81KB Image download
Figure 2. 57KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Sundaresan A, Chase JG: Positive end expiratory pressure in patients with acute respiratory distress syndrome - The past, present and future. Biomed Signal Process Control 2011, 7(2):93-103.
  • [2]Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T: Model-based PEEP optimisation in mechanical ventilation. BioMed Eng OnLine 2011, 10(1):111. BioMed Central Full Text
  • [3]Kallet RH, Branson RD: Do the NIH ARDS clinical trials network PEEP/FIO2 tables provide the best evidence-based guide to balancing PEEP and FIO2 settings in adults? Respir Care 2007, 52(4):461-477.
  • [4]Chase JG, Moeller K, Shaw G, Schranz C, Chiew YS, Desaive T: When the value of gold is zero. BMC Res Notes 2014, 7(1):404. BioMed Central Full Text
  • [5]The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000, 342(18):1301-1308.
  • [6]Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, Lefrant J-Y, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Group EPES: Positive End-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008, 299(6):646-655.
  • [7]Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, for the Lung Open Ventilation Study I: Ventilation strategy using Low tidal volumes, recruitment maneuvers, and high positive End-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008, 299(6):637-645.
  • [8]Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT: Higher versus lower positive End-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004, 351(4):327-336.
  • [9]Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard J-CM, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G: Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA 2010, 303(9):865-873.
  • [10]Gattinoni L, Carlesso E, Brazzi L, Caironi P: Positive end-expiratory pressure. Curr Opin Crit Care 2010, 16(1):39-44.
  • [11]Slutsky AS: Lung injury caused by mechanical ventilation*. Chest 1999, 116(suppl 1):9S-15S.
  • [12]Lucangelo U, Pelosi P, Zin W, Aliverti A, Crimi E, Sorbo L, Ranieri VM: Ventilator-Associated Lung Injury. In Respiratory System and Artificial Ventilation. Milan: Springer; 2008:119-137.
  • [13]Albaiceta G, Garcia E, Taboada F: Comparative study of four sigmoid models of pressure-volume curve in acute lung injury. BioMed Eng OnLine 2007, 6(1):7. BioMed Central Full Text
  • [14]Mols G, Brandes I, Kessler V, Lichtwarck-Aschoff M, Loop T, Geiger K, Guttmann J: Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intensive Care Med 1999, 25:1084-1091.
  • [15]Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G: Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 2007, 35:214-221.
  • [16]Carvalho A, Jandre F, Pino A, Bozza F, Salluh J, Rodrigues R, Ascoli F, Giannella-Neto A: Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care 2007, 11(4):R86. BioMed Central Full Text
  • [17]Schumann S, Vimlati L, Kawati R, Guttmann J, Lichtwarck Aschoff M: Analysis of dynamic intratidal compliance in a lung collapse model. Anesthesiology 2011, 114(5):1111-1117. doi:1110.1097/ALN.1110b1013e31820ad31841b
  • [18]Lambermont B, Ghuysen A, Janssen N, Morimont P, Hartstein G, Gerard P, D'Orio V: Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care 2008, 12(4):R91. BioMed Central Full Text
  • [19]van Drunen E, Chiew YS, Pretty C, Shaw G, Lambermont B, Janssen N, Chase JG, Desaive T: Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm Med 2014, 14(1):33. BioMed Central Full Text
  • [20]Lucangelo U, Bernabè F, Blanch L: Lung mechanics at the bedside: make it simple. Curr Opin Crit Care 2007, 13(1):64-72.
  • [21]Gilstrap D, MacIntyre N: Patient–ventilator interactions. Implications for clinical management. Am J Respir Crit Care Med 2013, 188(9):1058-1068.
  • [22]Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N, Giraud R, Mancebo J, Brochard L, Richard J-CM: Mechanical ventilation-induced reverse-triggered breaths: A frequently unrecognized form of neuromechanical coupling. CHEST 2013, 143(4):927-938.
  • [23]Brochard L, Martin G, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard J-C, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent J-L: Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care 2012, 16(2):219. BioMed Central Full Text
  • [24]Khirani S, Polese G, Aliverti A, Appendini L, Nucci G, Pedotti A, Colledan M, Lucianetti A, Baconnier P, Rossi A: On-line monitoring of lung mechanics during spontaneous breathing: a physiological study. Respir Med 2010, 104(3):463-471.
  • [25]Albaiceta GM, Piacentini E, Villagrá A, Lopez-Aguilar J, Taboada F, Blanch L: Application of continuous positive airway pressure to trace static pressure-volume curves of the respiratory system. Crit Care Med 2003, 31(10):2514-2519.
  • [26]van Drunen E, Chiew YS, Chase JG, Shaw G, Lambermont B, Janssen N, Damanhuri N, Desaive T: Expiratory model-based method to monitor ARDS disease state. BioMed Eng OnLine 2013, 12(1):57. BioMed Central Full Text
  • [27]Barberis L, Manno E, Guérin C: Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Intensive Care Med 2003, 29(1):130-134.
  • [28]Chiew YS: Model-Based Mechanical Ventilation for the Critically III. New Zealand: University of Canterbury; 2013.
  • [29]Pintado M-C, de Pablo R, Trascasa M, Milicua J-M, Rogero S, Daguerre M, Cambronero J-A, Arribas I, Sánchez-García M: Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013, 58(9):1416-1423.
  文献评价指标  
  下载次数:207次 浏览次数:82次