Biology Direct | |
Quantitative proteomics signature profiling based on network contextualization | |
Wilson Wen Bin Goh3  Tiannan Guo2  Ruedi Aebersold1  Limsoon Wong3  | |
[1] Faculty of Science, University of Zurich, Zurich, Switzerland | |
[2] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland | |
[3] School of Computing, National University of Singapore, Singapore, Singapore | |
关键词: Systems Biology; SWATH; Bioinformatics; Quantitative Proteomics Signature Profiling (qPSP); Networks; Proteomics; | |
Others : 1235128 DOI : 10.1186/s13062-015-0098-x |
|
received in 2015-10-15, accepted in 2015-11-30, 发布年份 2015 | |
【 摘 要 】
Background
We present a network-based method, namely quantitative proteomic signature profiling (qPSP) that improves the biological content of proteomic data by converting protein expressions into hit-rates in protein complexes.
Results
We demonstrate, using two clinical proteomics datasets, that qPSP produces robust discrimination between phenotype classes (e.g. normal vs. disease) and uncovers phenotype-relevant protein complexes. Regardless of acquisition paradigm, comparisons of qPSP against conventional methods (e.g. t-test or hypergeometric test) demonstrate that it produces more stable and consistent predictions, even at small sample size. We show that qPSP is theoretically robust to noise, and that this robustness to noise is also observable in practice. Comparative analysis of hit-rates and protein expressions in significant complexes reveals that hit-rates are a useful means of summarizing differential behavior in a complex-specific manner.
Conclusions
Given qPSP’s ability to discriminate phenotype classes even at small sample sizes, high robustness to noise, and better summary statistics, it can be deployed towards analysis of highly heterogeneous clinical proteomics data.
Reviewers
This article was reviewed by Frank Eisenhaber and Sebastian Maurer-Stroh.
Open peer review
Reviewed by Frank Eisenhaber and Sebastian Maurer-Stroh.
【 授权许可】
2015 Goh et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160102010959948.pdf | 3415KB | download | |
Fig. 8. | 130KB | Image | download |
Fig. 7. | 54KB | Image | download |
Fig. 6. | 52KB | Image | download |
Fig. 5. | 53KB | Image | download |
Fig. 4. | 83KB | Image | download |
Fig. 3. | 91KB | Image | download |
Fig. 2. | 116KB | Image | download |
Fig. 1. | 34KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
【 参考文献 】
- [1]Brill LM, Motamedchaboki K, Wu S, Wolf DA: Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry. Methods 2009, 48(3):311-319.
- [2]Gunaratne J, Schmidt A, Quandt A, Neo SP, Sarac OS, Gracia T, et al.: Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas. Mol Cell Proteomics 2013, 12(6):1741-1751.
- [3]Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, et al.: A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013, 494(7436):266-270.
- [4]Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R: Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009, 460(7256):762-765.
- [5]Krug K, Carpy A, Behrends G, Matic K, Soares NC, Macek B: Deep coverage of the Escherichia coli proteome enables the assessment of false discovery rates in simple proteogenomic experiments. Mol Cell Proteomics 2013, 12(11):3420-3430.
- [6]Schubert OT, Mouritsen J, Ludwig C, Rost HL, Rosenberger G, Arthur PK, et al.: The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 2013, 13(5):602-612.
- [7]Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, et al.: A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol 2007, 25(5):576-583.
- [8]Costanzo MC, Hogan JD, Cusick ME, Davis BP, Fancher AM, Hodges PE, et al.: The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 2000, 28(1):73-76.
- [9]Li WW, Quinn GB, Alexandrov NN, Bourne PE, Shindyalov IN: A comparative proteomics resource: proteins of Arabidopsis thaliana. Genome Biol 2003, 4(8):R51. BioMed Central Full Text
- [10]Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, et al.: The quantitative proteome of a human cell line. Mol Syst Biol 2011, 7:549.
- [11]Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, et al.: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011, 7:548.
- [12]Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al.: A draft map of the human proteome. Nature 2014, 509(7502):575-581.
- [13]Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, et al.: Mass-spectrometry-based draft of the human proteome. Nature 2014, 509(7502):582-587.
- [14]Carvalho PC, Han X, Xu T, Cociorva D, Carvalho Mda G, Barbosa VC, et al.: XDIA: improving on the label-free data-independent analysis. Bioinformatics 2010, 26(6):847-848.
- [15]Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR: Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 2004, 1(1):39-45.
- [16]Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, et al.: UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 2006, 20(13):1989-1994.
- [17]Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al.: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012, 11(6):O111-O016717.
- [18]Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nature medicine. 2015. doi:10.1038/nm.3807.
- [19]Geiger T, Wehner A, Schaab C, Cox J, Mann M: Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 2012, 11(3):M111-M014050.
- [20]Goh WW, Lee YH, Ramdzan ZM, Sergot MJ, Chung M, Wong L: Proteomics signature profiling (PSP): a novel contextualization approach for cancer proteomics. J Proteome Res 2012, 11(3):1571-1581.
- [21]Goh WW, Lee YH, Zubaidah RM, Jin J, Dong D, Lin Q, et al.: Network-based pipeline for analyzing MS data: an application toward liver cancer. J Proteome Res 2011, 10(5):2261-2272.
- [22]Goh WW, Sergot MJ, Sng JC, Wong L: Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic Acid-treated mice. J Proteome Res 2013, 12(5):2116-2127.
- [23]Goh WW, Fan M, Low HS, Sergot M, Wong L: Enhancing the utility of Proteomics Signature Profiling (PSP) with Pathway Derived Subnets (PDSs), performance analysis and specialised ontologies. BMC Genomics 2013, 14:35. BioMed Central Full Text
- [24]Goh WW, Wong L, Sng JC: Contemporary network proteomics and its requirements. Biology (Basel) 2013, 3(1):22-38.
- [25]Lim K, Wong L: Finding consistent disease subnetworks using PFSNet. Bioinformatics 2014, 30(2):189-196.
- [26]Soh D, Dong D, Guo Y, Wong L: Finding consistent disease subnetworks across microarray datasets. BMC Bioinformatics 2011, 12(Suppl 13):S15. BioMed Central Full Text
- [27]Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al.: Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513(7518):382-387.
- [28]Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005, 33(Database issue):D501-D504.
- [29]Tabb DL, Fernando CG, Chambers MC: MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 2007, 6(2):654-661.
- [30]Dasari S, Chambers MC, Martinez MA, Carpenter KL, Ham AJ, Vega-Montoto LJ, et al.: Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment. J Proteome Res 2012, 11(3):1686-1695.
- [31]Beasley-Green A, Bunk D, Rudnick P, Kilpatrick L, Phinney K: A proteomics performance standard to support measurement quality in proteomics. Proteomics 2012, 12(7):923-931.
- [32]McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, et al.: Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 2012, 84(17):7469-7478.
- [33]Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, et al.: Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med 2015, 21(4):407-413.
- [34]Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, et al.: OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 2014, 32(3):219-223.
- [35]Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, et al.: CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 2008, 36(Database issue):D646-D650.
- [36]Raju TN: William Sealy Gosset and William A. Silverman: two “students” of science. Pediatrics 2005, 116(3):732-735.
- [37]Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22(12):1540-1542.
- [38]Hoffmann O, Heubner M, Anlasik T, Winterhalter M, Dahlmann B, Kasimir-Bauer S, et al.: Circulating 20S proteasome in patients with non-metastasized breast cancer. Anticancer Res 2011, 31(6):2197-2201.
- [39]de Martino M, Hoetzenecker K, Ankersmit HJ, Roth GA, Haitel A, Waldert M, et al.: Serum 20S proteasome is elevated in patients with renal cell carcinoma and associated with poor prognosis. Br J Cancer 2012, 106(5):904-908.
- [40]Beise N, Trimble W: Septins at a glance. J Cell Sci 2011, 124(Pt 24):4141-4146.
- [41]Connolly D, Yang Z, Castaldi M, Simmons N, Oktay MH, Coniglio S, et al.: Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res 2011, 13(4):R76. BioMed Central Full Text
- [42]Estey MP, Kim MS, Trimble WS: Septins. Curr Biol 2011, 21(10):R384-R387.
- [43]Hager M, Haufe H, Alinger B, Kolbitsch C: pS6 Expression in normal renal parenchyma, primary renal cell carcinomas and their metastases. Pathol Oncol Res 2012, 18(2):277-283.