期刊论文详细信息
BMC Biotechnology
Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology
Yew Joon Tam1  Zeenathul Nazariah Allaudin1  Mohd Azmi Mohd Lila2  Abdul Rani Bahaman2  Joo Shun Tan1  Morvarid Akhavan Rezaei1 
[1] Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
[2] Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
关键词: Recombinant protein;    Pichia pastoris;    High pressure homogenizer;    Glass bead;    Cell disruption;    Hepatitis B surface antigen;   
Others  :  1134764
DOI  :  10.1186/1472-6750-12-70
 received in 2012-03-09, accepted in 2012-10-02,  发布年份 2012
PDF
【 摘 要 】

Background

Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells.

Results

The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively.

Conclusions

The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing.

【 授权许可】

   
2012 Tam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306063107474.pdf 1135KB PDF download
Figure 6. 40KB Image download
Figure 5. 30KB Image download
Figure 4. 41KB Image download
Figure 3. 20KB Image download
Figure 2. 19KB Image download
Figure 1. 14KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Torbenson M, Thomas DL: Occult hepatitis B. Lancet Infect Dis 2002, 2(8):479-486.
  • [2]Sunil Kumar G, Ganapathi T, Srinivas L, Revathi C, Bapat V: Expression of hepatitis B surface antigen in potato hairy roots. Plant Sci 2006, 170(5):918-925.
  • [3]Sung J: Hepatitis B virus eradication strategy for Asia. Vaccine 1990, 8:S81-S85.
  • [4]Dehesa-Violante M, Nuñez-Nateras R: Epidemiology of hepatitis virus B and C. Arch Med Res 2007, 38(6):606-611.
  • [5]Lai CL, Ratziu V, Yuen MF, Poynard T: Viral hepatitis B. Lancet 2003, 362(9401):2089-2094.
  • [6]Bruss V, Ganem D: Mutational analysis of hepatitis B surface antigen particle assembly and secretion. J Virol 1991, 65(7):3813-3820.
  • [7]Shiosaki K, Takata K, Nishimura S, Mizokami H, Matsubara K: Production of hepatitis B virion-like particles in yeast. Gene 1991, 106(2):143.
  • [8]Fujisawa Y, Ito Y, Sasada R, Ono Y, Igarashi K, Marumoto R, Kikuchi M, Sugino Y: Direct expression of hepatitis B surface antigen gene in E coli. Nucleic Acids Res 1983, 11(11):3581-3591.
  • [9]Hitzeman RA, Chen CY, Hagie FE, Patzer EJ, Liu CC, Estell DA, Miller JV, Yaffe A, Kleid DG, Levinson AD: Expression of hepatitis B virus surface antigen in yeast. Nucleic Acids Res 1983, 11(9):2745-2763.
  • [10]Morvarid A, Zeenathul N, Tam Y, Zuridah H, Mohd-azmi M, Azizon B: Effect of glycerol feed in methanol induction phase for hepatitis B surface antigen expression in Pichia pastoris strain KM71. Pertanika J Sci & Technol 2012, 20(1):31-42.
  • [11]Hardy E, Martínez E, Diago D, Díaz R, González D, Herrera L: Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. J Biotechnol 2000, 77(2):157-167.
  • [12]Michel ML, Sobczak E, Malpièce Y, Tiollais P, Streeck RE: Expression of amplified hepatitis B virus surface antigen genes in Chinese hamster ovary cells. Nat Biotechnol 1985, 3(6):561-566.
  • [13]Sunil Kumar G, Ganapathi T, Revathi C, Prasad K, Bapat V: Expression of hepatitis B surface antigen in tobacco cell suspension cultures. Protein Expr Purif 2003, 32(1):10-17.
  • [14]Kleinig AR, Middelberg APJ: The correlation of cell disruption with homogenizer valve pressure gradient determined by computational fluid dynamics. Chem Eng Sci 1996, 51(23):5103-5110.
  • [15]Fish NM, Lilly MD: The interactions between fermentation and protein recovery. Nat Biotechnol 1984, 2(7):623-627.
  • [16]Middelberg APJ: Process-scale disruption of microorganisms. Biotechnol Adv 1995, 13(3):491-551.
  • [17]Foster D: Optimizing recombinant product recovery through improvements in cell-disruption technologies. Curr Opin Biotechnol 1995, 6(5):523-526.
  • [18]Schütte H, Kula M-R: Cell disruption and isolation of non-secreted products. In: Biotechnology Set. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008:505-526.
  • [19]Hetherington PJ, Follows M, Dunnill P, LlLly MD: Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogenizer. Chem Eng Res Des 1971, 49(a):142-148.
  • [20]Lovitt RW, Jones M, Collins SE, Coss GM, Yau CP, Attouch C: Disruption of bakers’ yeast using a disruptor of simple and novel geometry. Process Biochem 2000, 36(5):415-421.
  • [21]Follows M, Hetherington PJ, Dunnill P, Lilly MD: Release of enzymes from bakers’ yeast by disruption in an industrial homogenizer. Biotechnol Bioeng 1971, 13(4):549-560.
  • [22]Moore EK, Hoare M, Dunnill P: Disruption of baker’s yeast in a high-pressure homogenizer: new evidence on mechanism. Enzyme Microb Technol 1990, 12(10):764-770.
  • [23]Pandolf WD: High-pressure homogenization. Chem Process 1998, 61(3):39-43.
  • [24]Engler CR, Asenjo JA: Cell disruption by homogenizer. Separation Processes in Biotechnology 1990, 9:95-105.
  • [25]Diels AMJ, De Taeye J, Michiels CW: Sensitisation of Escherichia coli to antibacterial peptides and enzymes by high-pressure homogenisation. Int J Food Microbiol 2005, 105(2):165-175.
  • [26]Lovering AL, Strynadka NCJ: High-resolution structure of the major periplasmic domain from the cell shape-determining filament MreC. J Mol Biol 2007, 372(4):1034-1044.
  • [27]Ramanan RN, Tey BT, Ling TC, Ariff AB: Classification of pressure range based on the characterization of Escherichia coli cell disruption in high pressure homogenizer. Am J Biochem Biotech 2009, 5:21-29.
  • [28]Siddiqi SF, Titchenerâ-Hooker NJ, Shamlou PA: High pressure disruption of yeast cells: the use of scale down operations for the prediction of protein release and cell debris size distribution. Biotechnol Bioeng 1997, 55(4):642-649.
  • [29]Chisti Y, Moo-Young M: Disruption of microbial cells for intracellular products. Enzyme Microb Technol 1986, 8(4):194-204.
  • [30]Adinarayana K, Ellaiah P, Srinivasulu B, Bhavani Devi R, Adinarayana G: Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem 2003, 38(11):1565-1572.
  • [31]Tan JS, Ramanan RN, Azaman SNA, Ling TC, Shuhaimi M, Ariff AB: Enhanced interferon-α2b production in periplasmic space of Escherichia coli through medium optimization using response surface method. Open Biotechnol J 2009, 3:117-124.
  • [32]Sánchez-Romeu J, País-Chanfrau JM, Pestana-Vila Y, López-Larraburo I, Masso-Rodríguez Y, Linares-Domínguez M, Márquez-Perera G: Statistical optimization of immunoaffinity purification of hepatitis B surface antigen using response surface methodology. Biochem Eng J 2008, 38(1):1-8.
  • [33]Li C, Bai J, Cai Z, Ouyang F: Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol 2002, 93(1):27-34.
  • [34]Kleinig AR, Middelberg APJ: On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 1998, 53(5):891-898.
  • [35]Donsě F, Ferrari G, Lenza E, Maresca P: Main factors regulating microbial inactivation by high-pressure homogenization: Operating parameters and scale of operation. Chem Eng Sci 2009, 64(3):520-532.
  • [36]Diels AMJ, Michiels CW: High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 2006, 32(4):201-216.
  • [37]Harrison STL: Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 1991, 9(2):217-240.
  • [38]Donsì G, Ferrari G, Maresca P: Pulsed high pressure treatment for the inactivation of Saccharomyces cerevisiae: the effect of process parameters. J Food Eng 2007, 78(3):984-990.
  • [39]Wuytack EY, Diels AMJ, Michiels CW: Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. Int J Food Microbiol 2002, 77(3):205-212.
  • [40]Agerkvist I, Enfors SO: Characterization of E. coli cell disintegrates from a bead mill and high pressure homogenizers. Biotechnol Bioeng 1990, 36(11):1083-1089.
  • [41]Van Hee P, Middelberg APJ, Van Der Lans RGJM, Van Der Wielen LAM: Relation between cell disruption conditions, cell debris particle size, and inclusion body release. Biotechnol Bioeng 2004, 88(1):100-110.
  • [42]Peleg M, Cole MB: Reinterpretation of microbial survival curves. Crit Rev Food Sci 1998, 38(5):353-380.
  • [43]Duerre JA, Ribi E: Enzymes released from Escherichia coli with the aid of a Servall cell fractionator. Appl Microbiol 1963, 11(6):467-471.
  • [44]Bailey SM, Meagher MM: Crossflow microfiltration of recombinant Escherichia coli lysates after high pressure homogenization. Papers Biotechnol 1997, 56(3):304-310.
  • [45]Keshavarz E, Bonnerjea J, Hoare M, Dunnill P: Disruption of a fungal organism, Rhizopus nigricans, in a high-pressure homogenizer. Enzyme Microb Technol 1990, 12(7):494-498.
  • [46]Limon-Lason J, Hoare M, Orsborn CB, Doyle DJ, Dunnill P: Reactor properties of a high-speed bead mill for microbial cell rupture. Biotechnol Bioeng 1979, 21(5):745-774.
  • [47]Vassileva A, Chugh DA, Swaminathan S, Khanna N: Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol 2001, 88(1):21-35.
  • [48]Harrison S, Chase H, Dennis J: The disruption of Alcaligenes eutrophus by high pressure homogenisation: key factors involved in the process. Bioseparation 1991, 2(3):155.
  • [49]Abbasalipourkabir R, Salehzadeh A, Abdullah R: Cytotoxicity effect of solid lipid nanoparticles on human breast cancer cell lines. Biotechnology 2011, 10:528-533.
  • [50]Balasundaram B, Harrison STL: Influence of the extent of disruption of Bakers’ yeast on protein adsorption in expanded beds. J Biotechnol 2008, 133(3):360-369.
  • [51]Fish NM, Harbron S, Allenby DJ, Lilly MD: Oxidation of n-alkanes: isolation of alkane hydroxylase from Pseudomonas putida. Appl Microbiol Biotechnol 1983, 17(1):57-63.
  • [52]Augenstein D, Thrasher K, Sinskey A, Wang D: Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 1974, 16(11):1433-1447.
  • [53]Save S, Pandit A, Joshi J: Microbial cell disruption: role of cavitation. Chem Eng J Biochem Eng J 1994, 55(3):B67-B72.
  • [54]Mosqueira F, Higgins J, Dunnill P, Lilly M: Characteristics of mechanically disrupted bakers’ yeast in relation to its separation in industrial centrifuges. Biotechnol Bioeng 1981, 23(2):335-343.
  • [55]Harrison ST, Chase HA, Dennis JS: The disruption of Alcaligenes eutrophus by high pressure homogenisation: key factors involved in the process. Bioseparation 1991, 2(3):155-166.
  • [56]Ayazi Shamlou P, Siddiqi S, Titchener-Hooker N: A physical model of high-pressure disruption of bakers’ yeast cells. Chem Eng Sci 1995, 50(9):1383-1391.
  • [57]Floury J, Desrumaux A, Axelos MAV, Legrand J: Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocolloids 2002, 16(1):47-53.
  • [58]Heim A, Kamionowska U, Solecki M: The effect of microorganism concentration on yeast cell disruption in a bead mill. J Food Eng 2007, 83(1):121-128.
  • [59]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
  • [60]Kruger NJ: The Bradford Method for Protein Quantitation. In The Protein Protocols Handbook. Edited by Walker JM. Totowa, NJ: Humana Press; 2002:15-21.
  • [61]Ho CW, Chew TK, Ling TC, Kamaruddin S, Tan WS, Tey BT: Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen. Process Biochem 2006, 41(8):1829-1834.
  文献评价指标  
  下载次数:62次 浏览次数:14次