| BMC Bioinformatics | |
| No statistical support for correlation between the positions of protein interaction sites and alternatively spliced regions | |
| Marc N Offman3  Ramil N Nurtdinov1  Mikhail S Gelfand2  Dmitrij Frishman3  | |
| [1] Department of Bioengineering and Bioinformatics, Moscow State University, Lab. Bldg. B, Leninskie Gory 1-73, Moscow, 119992, Russia | |
| [2] State Scientific Center GosNIIGenetika, 1st Dorozhny pr. 1, Moscow 117545, Russia | |
| [3] Department of Genome Oriented Bioinformatics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany | |
| 关键词: protein structure analysis; alternative splicing; protein-protein interactions; | |
| Others : 1171747 DOI : 10.1186/1471-2105-5-41 |
|
| received in 2004-01-13, accepted in 2004-04-19, 发布年份 2004 | |
PDF
|
|
【 摘 要 】
Background
Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions.
Results
Protein sequence spans involved in contacts with an interaction partner were delineated from atomic structures of transient interaction complexes and juxtaposed with the location of alternatively spliced regions detected by comparative genome analysis and spliced alignment. The total of 42 alternatively spliced isoforms were identified in 21 amino acid chains involved in biomolecular interactions. Using this limited dataset and a variety of sophisticated counting procedures we were not able to establish a statistically significant correlation between the positions of protein interaction sites and alternatively spliced regions.
Conclusions
This finding contradicts a naïve hypothesis that alternatively spliced regions would correlate with points of contact. One possible explanation for that could be that all alternative splicing events change the spatial structure of the interacting domain to a sufficient degree to preclude interaction. This is indirectly supported by the observed lack of difference in the behaviour of relatively short regions affected by alternative splicing and cases when large portions of proteins are removed. More structural data on complexes of interacting proteins, including structures of alternative isoforms, are needed to test this conjecture.
【 授权许可】
2004 Offman et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150420015152850.pdf | 929KB | ||
| Figure 7. | 20KB | Image | |
| Figure 6. | 21KB | Image | |
| Figure 5. | 19KB | Image | |
| Figure 4. | 37KB | Image | |
| Figure 3. | 27KB | Image | |
| Figure 2. | 20KB | Image | |
| Figure 1. | 28KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Ensembl Genome Browser [http://www.ensembl.org/Homo_sapiens/] webcite
- [2]maizegenome.org – Why Maize? [http://www.maizegenome.org/why_maize.html] webcite
- [3]Comprehensive Yeast Genome Database [http://mips.gsf.de/genre/proj/yeast/index.jsp] webcite
- [4]Gene Sweep 2003–2004 [http://www.ensembl.org/Genesweep] webcite
- [5]Mironov AA, Fickett JW, Gelfand MS: Frequent alternative splicing of human genes. Genome Res 1999, 9:1288-1293.
- [6]Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S, Reich J, Bork P: EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 2000, 474:83-86.
- [7]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
- [8]Kan Z, States D, Gish W: Selecting for functional alternative splices in ESTs. Genome Res 2002, 12:1837-1845.
- [9]Brett D, Pospisil H, Valcarcel J, Reich J, Bork P: Alternative splicing and genome complexity. Nat Genet 2002, 30:29-30.
- [10]Modrek B, Lee CJ: Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 2003, 34:177-180.
- [11]Nurtdinov RN, Artamonova II, Mironov AA, Gelfand MS: Low conservation of alternative splicing patterns in the human and mouse genomes. Hum Mol Genet 2003, 12:1313-1320.
- [12]Thanaraj TA, Clark F, Muilu J: Conservation of human alternative splice events in mouse. Nucleic Acids Res 2003, 31:2544-2552.
- [13]Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993, 74:597-608.
- [14]Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y: Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 2001, 20:6191-6202.
- [15]Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS, Sunyaev S: Increase of functional diversity by alternative splicing. Trends Genet 2003, 19:124-128.
- [16]Modrek B, Resch A, Grasso C, Lee C: Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 2001, 29:2850-2859.
- [17]Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E: Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 1999, 274:29510-29518.
- [18]Sudo T, Hidaka H: Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem 1998, 273:6351-6357.
- [19]Nurminsky DI, Nurminskaya MV, Benevolenskaya EV, Shevelyov YY, Hartl DL, Gvozdev VA: Cytoplasmic dynein intermediate-chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol Cell Biol 1998, 18:6816-6825.
- [20]Liu X, Szebenyi DM, Anguera MC, Thiel DJ, Stover PJ: Lack of catalytic activity of a murine mRNA cytoplasmic serine hydroxymethyltransferase splice variant: evidence against alternative splicing as a regulatory mechanism. Biochemistry 2001, 40:4932-4939.
- [21]Nooren IM, Thornton JM: Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 2003, 325:991-1018.
- [22]Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP: Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995, 376:313-320.
- [23]Gaudet R, Bohm A, Sigler PB: Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell 1996, 87:577-588.
- [24]Craft CM, Xu J, Slepak VZ, Zhan-Poe X, Zhu X, Brown B, Lolley RN: PhLPs and PhLOPs in the phosducin family of G beta gamma binding proteins. Biochemistry 1998, 37:15758-15772.
- [25]Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A: Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 1999, 97:635-646.
- [26]Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T: The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Mol Cell 1999, 4:793-803.
- [27]Resch A, Xing Y, Modrek B, Gorlick M, Riley R, Lee C: Assessing the impact of alternative splicing on domain interactions in the human proteome. J Proteome Res 2004, 3:76-83.
- [28]Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C: The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 2002, 58:899-907.
- [29]Protein-Protein Interaction Server [http://www.biochem.ucl.ac.uk/bsm/PP/server] webcite
- [30]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [31]Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L: Database resources of the National Center for Biotechnology. Nucleic Acids Res 2003, 31:28-33.
- [32]Mironov AA, Novichkov PS, Gelfand MS: Pro-Frame: similarity-based gene recognition in eukaryotic DNA sequences with errors. Bioinformatics 2001, 17:13-15.
PDF