期刊论文详细信息
BMC Cancer
Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt
Selena Z Kuo3  Katherine J Blair3  Elham Rahimy3  Alan Kiang3  Eric Abhold3  Jian-Bing Fan4  Jessica Wang-Rodriguez2  Xabier Altuna1  Weg M Ongkeko3 
[1] Hospital Universitario Donostia, San Sebastian, Spain
[2] Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, CA, USA
[3] Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, San Diego, CA, USA
[4] Illumina Inc., San Diego, CA, 92121, USA
关键词: microRNA;    EMT;    Akt;    Head and neck squamous cell carcinoma;    Cancer stem cells;    Salinomycin;   
Others  :  1080055
DOI  :  10.1186/1471-2407-12-556
 received in 2012-06-19, accepted in 2012-11-21,  发布年份 2012
PDF
【 摘 要 】

Background

Cancer stem cells (CSC) are believed to play a crucial role in cancer recurrence due to their resistance to conventional chemotherapy and capacity for self-renewal. Recent studies have reported that salinomycin, a livestock antibiotic, selectively targets breast cancer stem cells 100-fold more effectively than paclitaxel. In our study we sought to determine the effects of salinomycin on head and neck squamous cell carcinoma (HNSCC) stem cells.

Methods

MTS and TUNEL assays were used to study cell proliferation and apoptosis as a function of salinomycin exposure in JLO-1, a putative HNSCC stem cell culture. MTS and trypan blue dye exclusion assays were performed to investigate potential drug interactions between salinomycin and cisplatin or paclitaxel. Stem cell-like phenotype was measured by mRNA expression of stem cell markers, sphere-forming capacity, and matrigel invasion assays. Immunoblotting was also used to determine expression of epithelial-mesenchymal transition (EMT) markers and Akt phosphorylation. Arrays by Illumina, Inc. were used to profile microRNA expression as a function of salinomycin dose.

Results

In putative HNSCC stem cells, salinomycin was found to significantly inhibit cell viability, induce a 71.5% increase in levels of apoptosis, elevate the Bax/Bcl-2 ratio, and work synergistically with cisplatin and paclitaxel in inducing cell death. It was observed that salinomycin significantly inhibited sphere forming-capability and repressed the expression of CD44 and BMI-1 by 3.2-fold and 6.2-fold, respectively. Furthermore, salinomycin reduced invasion of HNSCC stem cells by 2.1 fold. Contrary to expectations, salinomycin induced the expression of EMT markers Snail, vimentin, and Zeb-1, decreased expression of E-cadherin, and also induced phosphorylation of Akt and its downstream targets GSK3-β and mTOR.

Conclusions

These results demonstrate that in HNSCC cancer stem cells, salinomycin can cause cell death and decrease stem cell properties despite activation of both EMT and Akt.

【 授权许可】

   
2012 Kuo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202222310565.pdf 1399KB PDF download
Figure 7. 141KB Image download
Figure 6. 34KB Image download
Figure 5. 83KB Image download
Figure 4. 87KB Image download
Figure 3. 48KB Image download
Figure 2. 73KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Ailles LE, Weissman IL: Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007, 18(5):460-466.
  • [2]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003, 100(7):3983-3988.
  • [3]Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414(6859):105-111.
  • [4]Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, et al.: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008, 100(9):672-679.
  • [5]Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138(4):645-659.
  • [6]Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C: Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 2009, 390(3):743-749.
  • [7]Matsumori N, Morooka A, Murata M: Conformation and location of membrane-bound salinomycin-sodium complex deduced from NMR in isotropic bicelles. J Am Chem Soc 2007, 129(48):14989-14995.
  • [8]Creighton CJ, Chang JC, Rosen JM: Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010, 15(2):253-260.
  • [9]Larue L, Bellacosa A: Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 2005, 24(50):7443-7454.
  • [10]Li J, Zhou BP: Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 2011, 11:49. BioMed Central Full Text
  • [11]Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, Manzoli L, McCubrey JA, Cocco L: Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem 2011, 18(18):2715-2726.
  • [12]Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM: Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 2005, 168(1):29-33.
  • [13]Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004, 6(10):931-940.
  • [14]Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T, et al.: mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011, 71(9):3246-3256.
  • [15]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4):704-715.
  • [16]Devraj Basu KTM, Li-Ping W, Gimotty PA, Rachel H, Alan Diehl J, Rustgi AK, Lee JT, Kati R, Weinstein GS, Meenhard H: Detecting and targeting mesenchymal-like subpopulations within squamous cell carcinomas. Cell Cycle 2011, 10(12):2008-2016.
  • [17]Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007, 104(3):973-978.
  • [18]Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP, Blair KJ, Yu MA, Haas M, Brumund KT, et al.: EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS One 2012, 7(2):e32459.
  • [19]Chou TC: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010, 70(2):440-446.
  • [20]Chen J, Lozach J, Garcia EW, Barnes B, Luo S, Mikoulitch I, Zhou L, Schroth G, Fan JB: Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 2008, 36(14):e87.
  • [21]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [22]Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME: Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010, 32(9):1195-1201.
  • [23]Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, et al.: Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009, 385(3):307-313.
  • [24]Henry JC, Park JK, Jiang J, Kim JH, Nagorney DM, Roberts LR, Banerjee S, Schmittgen TD: miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2010, 403(1):120-125.
  • [25]Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L, Gramantieri L: MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010, 70(12):5184-5193.
  • [26]Pan YZ, Morris ME, Yu AM: MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009, 75(6):1374-1379.
  • [27]Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R: Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011, 17(16):5287-5298.
  • [28]Clark AS, West K, Streicher S, Dennis PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002, 1(9):707-717.
  • [29]Liu SQ, Yu JP, Yu HG, Lv P, Chen HL: Activation of Akt and ERK signalling pathways induced by etoposide confer chemoresistance in gastric cancer cells. Dig Liver Dis 2006, 38(5):310-318.
  • [30]Winograd-Katz SE, Levitzki A: Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. Oncogene 2006, 25(56):7381-7390.
  • [31]Boehmerle W, Endres M: Salinomycin induces calpain and cytochrome c-mediated neuronal cell death. Cell Death Dis 2011, 2:e168.
  • [32]Singh A, Settleman J: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010, 29(34):4741-4751.
  • [33]Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011, 12(7):720-726.
  • [34]Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, et al.: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7(1):51-63.
  • [35]Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010, 7(1):64-77.
  • [36]Bae KM, Parker NN, Dai Y, Vieweg J, Siemann DW: E-cadherin plasticity in prostate cancer stem cell invasion. Am J Cancer Res 2011, 1(1):71-84.
  • [37]Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, et al.: Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010, 183(5):2045-2053.
  • [38]Dong TT, Zhou HM, Wang LL, Feng B, Lv B, Zheng MH: Salinomycin selectively targets ‘CD133 +’ cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol 2011, 18(6):1797-1804.
  • [39]Ahn YH, Gibbons DL, Chakravarti D, Creighton CJ, Rizvi ZH, Adams HP, Pertsemlidis A, Gregory PA, Wright JA, Goodall GJ, et al.: ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Invest 2012, 122(9):3170-3183.
  文献评价指标  
  下载次数:56次 浏览次数:12次