期刊论文详细信息
BMC Bioinformatics
Clotho: addressing the scalability of forward time population genetic simulation
Ge Zhang2  Philip A. Wilsey1  Patrick P. Putnam1 
[1]Department of Electrical Engineering and Computing Systems, University of Cincinnati, PO Box 210030, Cincinnati 45221–0030, OH, USA
[2]Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati 45229–3026, OH, USA
关键词: Scalability;    Sequence representation;    Data structures;    Population genetic simulation;   
Others  :  1232177
DOI  :  10.1186/s12859-015-0631-z
 received in 2014-12-31, accepted in 2015-05-29,  发布年份 2015
PDF
【 摘 要 】

Background

Forward Time Population Genetic Simulations offer a flexible framework for modeling the various evolutionary processes occurring in nature. Often this model expressibility is countered by an increased memory usage or computational overhead. With the complexity of simulation scenarios continuing to increase, addressing the scalability of the underlying simulation framework is a growing consideration.

Results

We propose a general method for representing in silico genetic sequences using implicit data structures. We provide a generalized implementation as a C++ template library called Clotho. We compare the performance and scalability of our approach with those taken in other simulation frameworks, namely: FWDPP and simuPOP.

Conclusions

We show that this technique offers a 4x reduction in memory utilization. Additionally, with larger scale simulation scenarios we are able to offer a speedup of 6x - 46x.

【 授权许可】

   
2015 Putnam et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20140706021805178.pdf 611KB PDF download
Fig. 6. 31KB Image download
Fig. 5. 73KB Image download
Fig. 4. 88KB Image download
Fig. 3. 48KB Image download
Fig. 2. 59KB Image download
Fig. 1. 52KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Peng B, Chen HS, Mechanic LE, Racine B, Clarke J, Clarke L, Gillanders E, Feuer EJ. Genetic simulation resources: a website for the registration and discovery of genetic data simulators. Bioinformatics. 2013; 29(8):1101-2.
  • [2]Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for population and evolutionary genetics. Nat Rev Genet. 2012; 13(2):110-22.
  • [3]Yuan X, Miller DJ, Zhang J, Herrington D, Wang Y. An overview of population genetic data simulation. J Comput Biol. 2012; 19(1):42-54.
  • [4]Guillaume F, Rougemont J. Nemo: an evolutionary and population genetics programming framework. Bioinformatics. 2006; 22(20):2556-557.
  • [5]Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation environment. Bioinformatics. 2005; 21(18):3686-687.
  • [6]Thornton KR. A C++ template library for efficient forward-time population genetic simulation of large populations. Genetics. 2014. http://www.genetics.org/content/early/2014/06/19/genetics.114.165019.abstract.
  • [7]Carvajal-Rodríguez A. Simulation of genes and genomes forward in time. Curr Genet. 2010; 11(1):58-61.
  • [8]Aberer A, Stamatakis A. Rapid forward-in-time simulation at the chromosome and genome level. BMC Bioinformatics. 2013; 14(1):216.
  • [9]Hudson RR. Generating samples under a wright–fisher neutral model of genetic variation. Bioinformatics. 2002; 18(2):337-8.
  • [10]Tajima F. Infinite-allele model and infinite-site model in population genetics. J Genet. 1996; 75(1):27-31.
  • [11]Denning PJ. The locality principle. Commun ACM. 2005; 48(7):19-24.
  • [12]Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics. 1964; 49:725-38.
  • [13]Haiminen N, Utro F, Lebreton C, Flament P, Karaman Z, Parida L. Efficient in silico chromosomal representation of populations via indexing ancestral genomes. Algorithms. 2013; 6(3):430-41.
  • [14]Kessner D, Novembre J. forqs: forward-in-time simulation of recombination, quantitative traits and selection. Bioinformatics. 2014; 30(4):576-7.
  文献评价指标  
  下载次数:51次 浏览次数:29次