期刊论文详细信息
Biotechnology for Biofuels
Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment
Chessa Scullin2  Alejandro G. Cruz4  Yi-De Chuang4  Blake A. Simmons2  Dominique Loque3  Seema Singh1 
[1] Joint BioEnergy Institute, 5885 Hollis Street, Emeryville 94608, CA, USA
[2] Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA, USA
[3] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
[4] Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA, USA
关键词: Ionic liquid;    Saccharification;    Lignin;    Cell wall;    Biofuels;    Arabidopsis;   
Others  :  1228592
DOI  :  10.1186/s13068-015-0275-2
 received in 2014-08-12, accepted in 2015-06-15,  发布年份 2015
【 摘 要 】

Background

Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.

Results

Engineered Arabidopsis plants were treated with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 im][OAc]) at 10 % wt biomass loading at either 70 °C for 5 h or 140 °C for 3 h. After pretreatment at 140 °C and subsequent saccharification, the relative peak sugar recovery of ~26.7 g sugar per 100 g biomass was not statistically different for the wild type than the peak recovery of ~25.8 g sugar per 100 g biomass for the engineered plants (84 versus 86 % glucose from the starting biomass). Reducing the pretreatment temperature to 70 °C for 5 h resulted in a significant reduction in the peak sugar recovery obtained from the wild type to 16.2 g sugar per 100 g biomass, whereas the engineered lines with reduced lignin content exhibit a higher peak sugar recovery of 27.3 g sugar per 100 g biomass and 79 % glucose recoveries.

Conclusions

The engineered Arabidopsis lines generate high sugar yields after pretreatment at 70 °C for 5 h and subsequent saccharification, while the wild type exhibits a reduced sugar yield relative to those obtained after pretreatment at 140 °C. Our results demonstrate that employing cell wall engineering efforts to decrease the recalcitrance of lignocellulosic biomass has the potential to drastically reduce the energy required for effective pretreatment.

【 授权许可】

   
2015 Scullin et al.

附件列表
Files Size Format View
Fig. 6. 44KB Image download
Fig. 5. 187KB Image download
Fig. 4. 98KB Image download
Fig. 3. 108KB Image download
Fig. 2. 185KB Image download
Fig. 1. 27KB Image download
Fig. 6. 44KB Image download
Fig. 5. 187KB Image download
Fig. 4. 98KB Image download
Figure 3. 26KB Image download
Fig. 2. 185KB Image download
Fig. 1. 27KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Figure 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Blanch HW, Adams PD, Andrews-Cramer KM, Frommer WB, Simmons BA, Keasling JD: Addressing the need for alternative transportation fuels: the Joint BioEnergy Institute. ACS Chem Biol 2008, 3:17-20.
  • [2]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenerg 2010, 34:1914-21.
  • [3]Searcy E, Flynn P, Ghafoori E, Kumar A: The relative cost of biomass energy transport. Appl Biochem Biotech 2007, 137:639-52.
  • [4]McMillan JD. Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuels production. Volume 566: ACS; 2011: 292–324: ACS Symposium Series.
  • [5]Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, et al.: Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 2011, 102:6928-36.
  • [6]Stone JE, Scallan AM, Donefer E, Ahlgren E. Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. In: Cellulases and their applications. Volume 95: ACS; 2011: 219–241: Advances in Chemistry.
  • [7]Viamajala S, McMillan JD, Schell DJ, Elander RT: Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour Technol 2009, 100:925-34.
  • [8]Arora R, Manisseri C, Li CL, Ong MD, Scheller HV, Vogel K, et al.: Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenerg Res 2010, 3:134-45.
  • [9]Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104:68-75.
  • [10]Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, et al.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 2010, 101:4900-6.
  • [11]Sun L, Li CL, Xue ZJ, Simmons BA, Singh S: Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. Rsc Adv 2013, 3:2017-27.
  • [12]Han YW, Lee JS, Anderson AW: Chemical composition and digestibility of ryegrass straw. J Agric Food Chem 1975, 23:928-41.
  • [13]Grohmann K, Torget R, Himmel ME: Biotechnol Bioeng Symp. 1985, 15:59-80.
  • [14]Huang R, Su R, Qi W, He Z: Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Progr 2010, 26:384-92.
  • [15]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25:759-61.
  • [16]Converse AO, Ooshima H, Burns DS: Kinetics of enzymatic-hydrolysis of lignocellulosic materials based on surface-area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotech 1990, 24–5:67-73.
  • [17]Blanch HW, Simmons BA, Klein-Marcuschamer D: Biomass deconstruction to sugars. Biotechnol J 2011, 6:1086-102.
  • [18]Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W: Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 2013, 6:46. BioMed Central Full Text
  • [19]Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, et al.: Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 2012, 10:609-20.
  • [20]Thevenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, et al.: The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Mol Plant 2011, 4:70-82.
  • [21]Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, et al.: Engineering secondary cell wall deposition in plants. Plant Biotechnol J 2013, 11:325-35.
  • [22]Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, et al.: Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnol Biofuels 2012, 5:84. BioMed Central Full Text
  • [23]Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, et al.: The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 2002, 30:33-45.
  • [24]Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA: Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality (vol 68, pg 1521, 2007). Phytochemistry 2007, 68:2023-3.
  • [25]Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki CY, Patten AM, et al.: Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 2010, 154:874-86.
  • [26]Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M: The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 2005, 17:2993-3006.
  • [27]Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS: Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 2011, 108:2865-75.
  • [28]Dadi AP, Schall CA, Varanasi S: Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 2007, 137–140:407-21.
  • [29]Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, et al.: One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 2013, 15:2579-89.
  • [30]Sundin L, Vanholme R, Geerinck J, Goeminne G, Hofer R, Kim H, et al.: Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE 2 alters lignin composition and improves saccharification. Plant Physiol 2014, 166(4):1956-71.
  • [31]Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, Van Acker R, et al.: Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. New Phytol 2013, 198:765-76.
  • [32]Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, et al.: A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 2012, 24:3506-29.
  • [33]Zhong R, Ye ZH: The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. Plant Signal Behav 2010, 5:469-72.
  • [34]Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH: Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol 2011, 52:1856-71.
  • [35]Chapelle A, Morreel K, Vanholme R, Le-Bris P, Morin H, Lapierre C, et al.: Impact of the absence of stem-specific beta-glucosidases on lignin and monolignols. Plant Physiol 2012, 160:1204-17.
  • [36]Eudes A, Liang Y, Mitra P, Loque D: Lignin bioengineering. Curr Opin Biotechnol 2014, 26:189-98.
  • [37]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of structural carbohydrates and lignin in biomass. LAP-002 NREL Analytical Procedure. 2008.
  文献评价指标  
  下载次数:222次 浏览次数:25次