期刊论文详细信息
Biotechnology for Biofuels
Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels
Helge Jans Janßen2  Alexander Steinbüchel1 
[1] Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
[2] Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
关键词: Regulation;    Fatty acid biosynthesis;    Escherichia coli;    Biofuels;   
Others  :  794065
DOI  :  10.1186/1754-6834-7-7
 received in 2013-10-11, accepted in 2013-12-24,  发布年份 2014
PDF
【 摘 要 】

The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.

【 授权许可】

   
2014 Janßen and Steinbüchel; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705062351660.pdf 885KB PDF download
Figure 4. 72KB Image download
Figure 3. 68KB Image download
Figure 2. 67KB Image download
Figure 5. 100KB Image download
【 图 表 】

Figure 5.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Agency International Energy: Medium-term oil market report 2013. [http://www.iea.org/w/bookshop/add.aspx?id=450 webcite]
  • [2]Antoni D, Zverlov VV, Schwarz WH: Biofuels from microbes. Appl Microbiol Biotechnol 2007, 77:23-35.
  • [3]Uthoff S, Bröker D, Steinbüchel A: Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2009, 2:551-565.
  • [4]Madhavan A, Srivastava A, Kondo A, Bisaria VS: Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 2012, 32:22-48.
  • [5]Amorim HV, Lopes ML, De Castro Oliveira JV, Buckeridge MS, Goldman GH: Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 2011, 91:1267-1275.
  • [6]Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA: Biofuels: a technological perspective. Energy Environ Sci 2008, 1:542-564.
  • [7]Atsumi S, Liao JC: Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 2008, 19:414-419.
  • [8]Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
  • [9]McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J: Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS One 2009, 4:e6802.
  • [10]Tsao C–C, Campbell JE, Spak SN, Carmichael GR, Chen Y: Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nat Clim Chang 2011, 2:53-57.
  • [11]Al-Zuhair S: Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 2007, 1:57-66.
  • [12]Michalopoulos A, Landeweerd L, Van der Werf-Kulichova Z, Puylaert PG, Osseweijer P: Contrasts and synergies in different biofuel reports. Interface Focus 2011, 1:248-254.
  • [13]European Biofuels Technology Platform: Biofuel production. [http://www.biofuelstp.eu/fuelproduction.html webcite]
  • [14]Delucchi MA: Impacts of biofuels on climate change, water use, and land use. Ann NY Acad Sci 2010, 1195:28-45.
  • [15]Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P: Land clearing and the biofuel carbon debt. Science 2008, 319:1235-1238.
  • [16]Keyzer MA, Merbis M, Voortman R: The biofuel controversy. De Economist 2003, 56:507-527.
  • [17]la Grange DC, den Haan R, van Zyl WH: Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010, 87:1195-1208.
  • [18]Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR: Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol–a review. Appl Biochem Biotechnol 2012, 166:1908-1926.
  • [19]Mazzoli R, Lamberti C, Pessione E: Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012, 30:111-119.
  • [20]Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD: Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA 2011, 108:19949-19954.
  • [21]Colin VL, Rodríguez A, Cristóbal HA: The role of synthetic biology in the design of microbial cell factories for biofuel production. J Biomed Biotechnol 2011, 2011:601834.
  • [22]Kosa M, Ragauskas AJ: Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 2012, 93:891-900.
  • [23]Liu X, Sheng J, Curtiss R III: Fatty acid production in genetically modified Cyanobacteria. Proc Natl Acad Sci USA 2011, 108:6899-6904.
  • [24]Kalscheuer R, Stölting T, Steinbüchel A: Microdiesel: Escherichia coli engineered for fuel production. Microbiology 2006, 152:2529-2536.
  • [25]Nawabi P, Bauer S, Kyrpides N, Lykidis A: Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol 2011, 77:8052-8061.
  • [26]Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
  • [27]Kates M, Wassef MK, Kushner DJ: Radioisotopic studies on the biosynthesis of the glyceryl diether lipids of Halobacterium cutirubrum. Can J Biochem 1968, 46:971-977.
  • [28]Pugh EL, Kates M: Acylation of proteins of the Archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim Biophys Acta 1994, 1196:38-44.
  • [29]Leibundgut M, Maier T, Jenni S, Ban N: The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 2008, 18:714-725.
  • [30]Schweizer E, Hofmann J: Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 2004, 68:501-517.
  • [31]Harwood JL: Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 1988, 39:101-138.
  • [32]Journet EP, Douce R: Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol 1985, 79:458-467.
  • [33]Kachroo A, Kachroo P: Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 2009, 47:153-176.
  • [34]Liedvogel B, Kleinig H: Fatty acid synthesis in isolated chromoplasts and chromoplast homogenates. ACP stimulation, substrate utilization and cerulenin inhibition. In Biochemistry and Function of Plant Lipids. Edited by Mazliak P, Benveniste P, Costes C, Douce R. Amsterdam: Elsevier; 1980:107-110.
  • [35]Bloch K, Vance D: Control mechanisms in the synthesis of saturated fatty acids. Annu Rev Biochem 1977, 46:263-298.
  • [36]Fernandes ND, Kolattukudy PE: Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 1996, 170:95-99.
  • [37]Kikuchi S, Rainwater DL, Kolattukudy PE: Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch Biochem Biophys 1992, 295:318-326.
  • [38]Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ: Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 2011, 7:e1002219.
  • [39]Kolattukudy PE, Fernandes ND, Azad AK, Fitzmaurice AM, Sirakova TD: Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 1997, 24:263-270.
  • [40]Gattinger A, Schloter M, Munch JC: Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol Lett 2002, 213:133-139.
  • [41]Jones WJ, Holzer GU: The polar and neutral lipid composition of Methanosphaera stadtmanae. Syst Appl Microbiol 1991, 14:130-134.
  • [42]Nishihara M, Nagahama S, Ohga M, Koga Y: Straight-chain fatty alcohols in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2000, 4:275-277.
  • [43]Harwood JL, Russell NJ: Lipids in Plants and Microbes. London: George Allen and Unwin; 1984:75-80.
  • [44]Tornabene TG, Langworthy TA: Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 1979, 203:51-53.
  • [45]Pugh EL, Wassef MK, Kates M: Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can J Biochem 1971, 49:953-958.
  • [46]Choi-Rhee E, Cronan JE Jr: The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 2003, 278:30806-30812.
  • [47]Cronan JE Jr, Waldrop GL: Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 2002, 41:407-435.
  • [48]Li SJ, Cronan JE Jr: The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 1992, 267:855-863.
  • [49]Li SJ, Cronan JE Jr: Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol 1993, 175:332-340.
  • [50]James ES, Cronan JE Jr: Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. J Biol Chem 2004, 279:2520-2527.
  • [51]Abdel-Hamid AM, Cronan JE Jr: Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli. J Bacteriol 2007, 189:369-376.
  • [52]Zhao H, Beckett D: Kinetic partitioning between alternative protein-protein interactions controls a transcriptional switch. J Mol Biol 2008, 380:223-236.
  • [53]Karow M, Fayet O, Georgopoulos C: The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol 1992, 174:7407-7418.
  • [54]Meades G Jr, Benson BK, Grove A, Waldrop GL: A tale of two functions: enzymatic activity and translational repression by carboxyltransferase. Nucleic Acids Res 2010, 38:1217-1227.
  • [55]Benson BK, Meades G Jr, Grove A, Waldrop GL: DNA inhibits catalysis by the carboxyltransferase subunit of acetyl-CoA carboxylase: implications for active site communication. Protein Sci 2008, 17:34-42.
  • [56]Bilder P, Lightle S, Bainbridge G, Ohren J, Finzel B, Sun F, Holley S, Al-Kassim L, Spessard C, Melnick M, Newcomer M, Waldrop GL: The structure of the carboxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Biochemistry 2006, 45:1712-1722.
  • [57]Li SJ, Cronan JE Jr: Putative zinc finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase. Plant Mol Biol 1992, 20:759-761.
  • [58]Sasaki Y, Nagano Y, Morioka S, Ishikawa H, Matsuno R: A chloroplast gene encoding a protein with one zinc finger. Nucleic Acids Res 1989, 17:6217-6227.
  • [59]Davis MS, Cronan JE Jr: Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 2001, 183:1499-1503.
  • [60]Davis MS, Solbiati J, Cronan JE Jr: Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 2000, 275:28593-28598.
  • [61]Zha W, Rubin-Pitel SB, Shao Z, Zhao H: Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 2009, 11:192-198.
  • [62]Joshi VC, Wakil SJ: Studies on the mechanism of fatty acid synthesis. XXVI. Purification and properties of malonyl-coenzyme A–acyl carrier protein transacylase of Escherichia coli. Arch Biochem Biophys 1971, 143:493-505.
  • [63]Verwoert II, Verhagen EF, van der Linden KH, Verbree EC, Nijkamp HJ, Stuitje AR: Molecular characterization of an Escherichia coli mutant with a temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. FEBS Lett 1994, 348:311-316.
  • [64]Zhang Y, Cronan JE Jr: Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J Bacteriol 1998, 180:3295-3303.
  • [65]Magnuson K, Oh W, Larson TJ, Cronan JE Jr: Cloning and nucleotide sequence of the fabD gene encoding malonyl coenzyme A-acyl carrier protein transacylase of Escherichia coli. FEBS Lett 1992, 299:262-266.
  • [66]Garwin JL, Klages AL, Cronan JE Jr: Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 1980, 255:3263-3265.
  • [67]Zhang X, Agrawal A, San KY: Improving fatty acid production in Escherichia coli through the overexpression of malonyl CoA-acyl carrier protein transacylase. Biotechnol Prog 2012, 28:60-65.
  • [68]Heath RJ, Rock CO: Inhibition of beta-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 1996, 271:10996-11000.
  • [69]Choi KH, Heath RJ, Rock CO: Beta-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol 2000, 182:365-370.
  • [70]Edwards P, Nelsen JS, Metz JG, Dehesh K: Cloning of the fabF gene in an expression vector and in vitro characterization of recombinant fabF and fabB encoded enzymes from Escherichia coli. FEBS Lett 1997, 402:62-66.
  • [71]D‘Agnolo G, Rosenfeld IS, Vagelos PR: Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J Biol Chem 1975, 250:5289-5294.
  • [72]Feng Y, Cronan JE Jr: Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 2009, 284:29526-29535.
  • [73]Lai CY, Cronan JE Jr: Beta-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis. J Biol Chem 2003, 278:51494-51503.
  • [74]Yao Z, Davis RM, Kishony R, Kahne D, Ruiz N: Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci USA 2012, 109:E2561-E2568.
  • [75]Tsay JT, Oh W, Larson TJ, Jackowski S, Rock CO: Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 1992, 267:6807-6814.
  • [76]Subrahmanyam S, Cronan JE Jr: Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 1998, 180:4596-4602.
  • [77]Cronan JE Jr, Birge CH, Vagelos PR: Evidence for two genes specifically involved in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 1969, 100:601-604.
  • [78]Cao Y, Yang J, Xian M, Xu X, Liu W: Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes. Appl Microbiol Biotechnol 2010, 87:271-280.
  • [79]Heath RJ, Rock CO: Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 1996, 271:1833-1836.
  • [80]Heath RJ, Rock CO: Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli. J Biol Chem 1995, 270:15531-15538.
  • [81]Toomey RE, Wakil SJ: Studies on the mechanism of fatty acid synthesis. XV. Preparation and general properties of beta-ketoacyl acyl carrier protein reductase from Escherichia coli. Biochim Biophys Acta 1966, 116:189-197.
  • [82]Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y: Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 2005, 71:4297-4306.
  • [83]Nomura CT, Tanaka T, Eguen TE, Appah AS, Matsumoto K, Taguchi S, Ortiz CL, Doi Y: FabG mediates polyhydroxyalkanoate production from both related and nonrelated carbon sources in recombinant Escherichia coli LS5218. Biotechnol Prog 2008, 24:342-351.
  • [84]Park SJ, Park JP, Lee SY: Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett 2002, 214:217-222.
  • [85]Lai CY, Cronan JE Jr: Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 2004, 186:1869-1878.
  • [86]Jeon E, Lee S, Lee S, Han SO, Yoon YJ, Lee J: Improved production of long-chain fatty acid in Escherichia coli by an engineering elongation cycle during fatty acid synthesis (FAS) through genetic manipulation. J Microbiol Biotechnol 2012, 22:990-999.
  • [87]Kass LR, Bloch K: On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci USA 1967, 58:1168-1173.
  • [88]Cronan JE Jr, Silbert DF, Wulff DL: Mapping of the fabA locus for unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 1972, 112:206-211.
  • [89]Silbert DF, Vagelos PR: Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci USA 1967, 58:1579-1586.
  • [90]Silbert DF: Genetic modification of membrane lipid. Annu Rev Biochem 1975, 44:315-339.
  • [91]Clark DP, DeMendoza D, Polacco ML, Cronan JE Jr: Beta-hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. Biochemistry 1983, 22:5897-5902.
  • [92]Heath RJ, Rock CO: Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 1996, 271:27795-27801.
  • [93]Bloch K: The Enzymes. 3rd edition. Edited by Boyer PD. New York: Academic Press; 1971:441-464.
  • [94]Mohan S, Kelly TM, Eveland SS, Raetz CR, Anderson MS: An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J Biol Chem 1994, 269:32896-32903.
  • [95]Bergler H, Fuchsbichler S, Högenauer G, Turnowsky F: The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur J Biochem 1996, 242:689-694.
  • [96]Nakashima N, Tamura T, Good L: Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 2006, 34:e138.
  • [97]Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Högenauer G, Turnowsky F: Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 1994, 269:5493-5496.
  • [98]Heath RJ, Rock CO: Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 1995, 270:26538-26542.
  • [99]Xu HH, Real L, Bailey MW: An array of Escherichia coli clones over-expressing essential proteins: a new strategy of identifying cellular targets of potent antibacterial compounds. Biochem Biophys Res Commun 2006, 349:1250-1257.
  • [100]Thomas J, Rigden DJ, Cronan JE Jr: Acyl carrier protein phosphodiesterase (AcpH) of Escherichia coli is a non-canonical member of the HD phosphatase/phosphodiesterase family. Biochemistry 2007, 46:129-136.
  • [101]Thomas J, Cronan JE Jr: The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J Biol Chem 2005, 280:34675-34683.
  • [102]Chan DI, Vogel HJ: Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 2010, 430:1-19.
  • [103]Goh S, Boberek JM, Nakashima N, Stach J, Good L: Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One 2009, 4:e6061.
  • [104]Keating DH, Carey MR, Cronan JE Jr: The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J Biol Chem 1995, 270:22229-22235.
  • [105]Rock CO, Goelz SE, Cronan JE Jr: Phospholipid synthesis in Escherichia coli. Characteristics of fatty acid transfer from acyl-acyl carrier protein to sn-glycerol 3-phosphate. J Biol Chem 1981, 256:736-742.
  • [106]Liu T, Vora H, Khosla C: Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
  • [107]Jha JK, Sinha S, Maiti MK, Basu A, Mukhopadhyay UK, Sen SK: Functional expression of an acyl carrier protein (ACP) from Azospirillum brasilense alters fatty acid profiles in Escherichia coli and Brassica juncea. Plant Physiol Biochem 2007, 45:490-500.
  • [108]Battesti A, Bouveret E: Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 2006, 62:1048-1063.
  • [109]Lu YJ, Zhang YM, Grimes KD, Qi J, Lee RE, Rock CO: Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell 2006, 23:765-772.
  • [110]Yao J, Rock CO: Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 2013, 1831:495-502.
  • [111]Zhang YM, Rock CO: Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 2008, 6:222-233.
  • [112]Ray TK, Cronan JE Jr: Acylation of sn-glycerol 3-phosphate in Escherichia coli. Study of reaction with native palmitoyl-acyl carrier protein. J Biol Chem 1975, 250:8422-8427.
  • [113]Heath RJ, Jackowski S, Rock CO: Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J Biol Chem 1994, 269:26584-26590.
  • [114]Wahl A, My L, Dumoulin R, Sturgis JN, Bouveret E: Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli. Mol Microbiol 2011, 80:1260-1275.
  • [115]Ogasawara H, Shinohara S, Yamamoto K, Ishihama A: Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology 2012, 158:1482-1492.
  • [116]Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ: Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 2008, 190:1084-1096.
  • [117]Yoshimura M, Oshima T, Ogasawara N: Involvement of the YneS/YgiH and PlsX proteins in phospholipid biosynthesis in both Bacillus subtilis and Escherichia coli. BMC Microbiol 2007, 7:69. BioMed Central Full Text
  • [118]Larson TJ, Ludtke DN, Bell RM: sn-Glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J Bacteriol 1984, 160:711-717.
  • [119]Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T: The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008, 68:1128-1148.
  • [120]Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B: Ligand-gated diffusion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011, 108:10121-10126.
  • [121]Campbell JW, Cronan JE Jr: The enigmatic Escherichia coli fadE gene is yafH. J Bacteriol 2002, 184:3759-3764.
  • [122]Weimar JD, DiRusso CC, Delio R, Black PN: Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J Biol Chem 2002, 277:29369-29376.
  • [123]Pech-Canul À, Nogales J, Miranda-Molina A, Àlvarez L, Geiger O, Soto MJ, López-Lara IM: FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 2011, 193:6295-6304.
  • [124]Zhang H, Wang P, Qi Q: Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli. FEMS Microbiol Lett 2006, 259:249-253.
  • [125]Black PN, Zhang Q, Weimar JD, DiRusso CC: Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 1997, 272:4896-4903.
  • [126]Yang SY, Li JM, He XY, Cosloy SD, Schulz H: Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase. J Bacteriol 1988, 170:2543-2548.
  • [127]Feigenbaum J, Schulz H: Thiolases of Escherichia coli: purification and chain length specificities. J Bacteriol 1975, 122:407-411.
  • [128]Duncombe GR, Frerman FE: Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli. Arch Biochem Biophys 1976, 176:159-170.
  • [129]Tu X, Hubbard PA, Kim JJ, Schulz H: Two distinct proton donors at the active site of Escherichia coli 2,4-dienoyl-CoA reductase are responsible for the formation of different products. Biochemistry 2008, 47:1167-1175.
  • [130]Nie L, Ren Y, Schulz H: Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation. Biochemistry 2008, 47:7744-7751.
  • [131]Feng Y, Cronan JE Jr: A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol 2009, 191:6320-6328.
  • [132]Campbell JW, Morgan-Kiss RM, Cronan JE Jr: A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 2003, 47:793-805.
  • [133]Morgan-Kiss RM, Cronan JE Jr: The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 2004, 279:37324-37333.
  • [134]Snell KD, Feng F, Zhong L, Martin D, Madison LL: YfcX enables medium-chain-length poly (3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 2002, 184:5696-5705.
  • [135]Cho BK, Knight EM, Palsson BO: Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology 2006, 152:2207-2219.
  • [136]Fujita Y, Matsuoka H, Hirooka K: Regulation of fatty acid metabolism in bacteria. Mol Microbiol 2007, 66:829-839.
  • [137]Kunau W-H, Dommes V, Schulz H: β-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 1996, 34:267-342.
  • [138]Henry MF, Cronan JE Jr: Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol 1991, 222:843-849.
  • [139]Henry MF, Cronan JE Jr: A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell 1992, 70:671-679.
  • [140]Feng Y, Cronan JE Jr: Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes. PLoS One 2012, 7:e46275.
  • [141]Dong T, Schellhorn HE: Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 2009, 10:349. BioMed Central Full Text
  • [142]Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M: Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 2012, 11:41. BioMed Central Full Text
  • [143]Lu X, Vora H, Khosla C: Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 2008, 10:333-339.
  • [144]Gui L, Sunnarborg A, LaPorte DC: Regulated expression of a repressor protein: FadR activates iclR. J Bacteriol 1996, 178:4704-4709.
  • [145]Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ: Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 2000, 182:4173-4179.
  • [146]DiRusso CC, Heimert TL, Metzger AK: Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem 1992, 267:8685-8691.
  • [147]Pauli G, Ehring R, Overath P: Fatty acid degradation in Escherichia coli: requirement of cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein for enzyme synthesis. J Bacteriol 1974, 117:1178-1183.
  • [148]Campbell JW, Cronan JE Jr: Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 2001, 55:305-332.
  • [149]My L, Rekoske B, Lemke JJ, Viala JP, Gourse RL, Bouveret E: Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013, 195:3784-3795.
  • [150]Overath P, Pauli G, Schairer HU: Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem 1969, 7:559-574.
  • [151]Nunn WD, Giffin K, Clark D, Cronan JE Jr: Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 1983, 154:554-560.
  • [152]Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD: Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 2012, 14:653-660.
  • [153]Farewell A, Diez AA, DiRusso CC, Nystrom T: Role of the Escherichia coli FadR regulator in stasis survival and growth phase-dependent expression of the uspA, fad, and fab genes. J Bacteriol 1996, 178:6443-6450.
  • [154]McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE: Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res 2001, 29:774-782.
  • [155]Zhang YM, Marrakchi H, Rock CO: The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. J Biol Chem 2002, 277:15558-15565.
  • [156]Zhu K, Zhang YM, Rock CO: Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem 2009, 284:34880-34888.
  • [157]Feng Y, Cronan JE Jr: Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Mol Microbiol 2011, 80:195-218.
  • [158]Tanaka Y, Tsujimura A, Fujita N, Isono S, Isono K: Cloning and analysis of an Escherichia coli operon containing the rpmF gene for ribosomal protein L32 and the gene for a 30-kilodalton protein. J Bacteriol 1989, 171:5707-5712.
  • [159]Podkovyrov S, Larson TJ: Lipid biosynthetic genes and a ribosomal protein gene are cotranscribed. FEBS Lett 1995, 368:429-431.
  • [160]Podkovyrov SM, Larson TJ: Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli. Nucleic Acids Res 1996, 24:1747-1752.
  • [161]Bremer H, Dennis PP: Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella: Cellular and Molecular Biology. 1st edition. Edited by Neidhardt FC. Washington DC: ASM Press; 1996:1553-1569.
  • [162]Schneider DA, Gourse RL: Relationship between growth rate and ATP concentration in Escherichia coli: a bioassay for available cellular ATP. J Biol Chem 2004, 279:8262-8268.
  • [163]Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL: DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 2004, 118:311-322.
  • [164]Paul BJ, Berkmen MB, Gourse RL: DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci USA 2005, 102:7823-7828.
  • [165]Srivatsan A, Wang JD: Control of bacterial transcription, translation and replication by (p) ppGpp. Curr Opin Microbiol 2008, 11:100-105.
  • [166]Traxler MF, Zacharia VM, Marquardt S, Summers SM, Nguyen HT, Stark SE, Conway T: Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the ‘feast to famine’ gradient in Escherichia coli. Mol Microbiol 2011, 79:830-845.
  • [167]Stent GS, Brenner S: A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci USA 1961, 47:2005-2014.
  • [168]Eichel J, Chang YY, Riesenberg D, Cronan JE Jr: Effect of ppGpp on Escherichia coli cyclopropane fatty acid synthesis is mediated through the RpoS sigma factor (sigmaS). J Bacteriol 1999, 181:572-576.
  • [169]Sammartano LJ, Tuveson RW, Davenport R: Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol 1986, 168:13-21.
  • [170]Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL: Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 1994, 176:1729-1737.
  • [171]Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W: Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 1991, 173:7918-7924.
  • [172]Lange R, Hengge-Aronis R: Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 1991, 173:4474-4481.
  • [173]Battesti A, Majdalani N, Gottesman S: The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011, 65:189-213.
  • [174]Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH: Dissection of the mechanism for the stringent factor RelA. Mol Cell 2002, 10:779-788.
  • [175]Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M: Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 1991, 266:5980-5990.
  • [176]Lazzarini RA, Cashel M, Gallant J: On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem 1971, 246:4381-4385.
  • [177]Spira B, Silberstein N, Yagil E: Guanosine 3’,5’-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol 1995, 177:4053-4058.
  • [178]Vinella D, Albrecht C, Cashel M, D‘Ari R: Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 2005, 56:958-970.
  • [179]Seyfzadeh M, Keener J, Nomura M: spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci USA 1993, 90:11004-11008.
  • [180]Neidhardt FC: Properties of a bacterial mutant lacking amino acid control of RNA synthesis. Biochim Biophys Acta 1963, 68:365-379.
  • [181]Ramagopal S, Davis BD: Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit. Proc Natl Acad Sci USA 1974, 71:820-824.
  • [182]Murray KD, Bremer H: Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 1996, 259:41-57.
  • [183]Stein JP Jr, Bloch KE: Inhibition of E. coli beta-hydroxydecanoyl thioester dehydrase by ppGpp. Biochem Biophys Res Commun 1976, 73:881-884.
  • [184]Hiraoka S, Matsuzaki H, Shibuya I: Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli. FEBS Lett 1993, 336:221-224.
  • [185]Taguchi M, Izui K, Katsuki H: Augmentation of cyclopropane fatty acid synthesis under stringent control in Escherichia coli. J Biochem 1980, 88:1879-1882.
  • [186]Dennis PP, Nomura M: Stringent control of ribosomal protein gene expression in Escherichia coli. Proc Natl Acad Sci USA 1974, 71:3819-3823.
  • [187]Lazzarini RA, Dahlberg AE: The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem 1971, 246:420-429.
  • [188]Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO: The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci USA 2006, 103:13962-13967.
  • [189]Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D, Cashel M, Babitzke P, Romeo T: Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 2011, 80:1561-1580.
  • [190]Cho H, Cronan JE Jr: Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 1995, 270:4216-4219.
  • [191]Ruffing AM, Jones HD: Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 2012, 109:2190-2199.
  • [192]Tang X, Feng H, Chen WN: Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng 2013, 16:95-102.
  • [193]Lennen RM, Pfleger BF: Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 2013, 8:e54031.
  • [194]Zhang X, Li M, Agrawal A, San KY: Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 2011, 13:713-722.
  • [195]Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M: Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 2012, 5:76. BioMed Central Full Text
  • [196]Yu X, Liu T, Zhu F, Khosla C: In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci USA 2011, 108:18643-18648.
  • [197]Desbois AP, Smith VJ: Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010, 85:1629-1642.
  • [198]Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II, Pfleger BF: Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 2011, 77:8114-8128.
  • [199]Lennen RM, Politz MG, Kruziki MA, Pfleger BF: Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 2013, 195:135-144.
  • [200]Oh HY, Lee JO, Kim OB: Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR. Appl Microbiol Biotechnol 2012, 96:1619-1627.
  • [201]Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
  • [202]Lennen RM, Braden DJ, West RA, Dumesic JA, Pfleger BF: A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193-202.
  • [203]Youngquist JT, Rose JP, Pfleger BF: Free fatty acid production in Escherichia coli under phosphate-limited conditions. Appl Microbiol Biotechnol 2013, 97:5149-5159.
  • [204]Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD: An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 2012, 14:687-704.
  • [205]Li M, Zhang X, Agrawal A, San KY: Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metab Eng 2012, 14:380-387.
  • [206]Bennet BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD: Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem Biol 2009, 5:593-599.
  • [207]Heuser F, Schroer K, Lutz S, Bringer-Meyer S, Sahm H: Enhancement of the NAD (P) (H) pool in Escherichia coli for biotransformation. Eng Life Sci 2007, 7:343-353.
  • [208]Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279:6613-6619.
  • [209]Yuan L, Voelker TA, Hawkins DJ: Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci USA 1995, 92:10639-10643.
  • [210]Babitzke P, Romeo T: CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007, 10:156-163.
  • [211]Liu MY, Romeo T: The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 1997, 179:4639-4642.
  • [212]Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T: The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 1997, 272:17502-17510.
  • [213]McKee AE, Rutherford BJ, Chivian DC, Baidoo EK, Juminaga D, Kuo D, Benke PI, Dietrich JA, Ma SM, Arkin AP, Petzold CJ, Adams PD, Keasling JD, Chhabra SR: Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 2012, 11:79. BioMed Central Full Text
  • [214]Dellomonaco C, Rivera C, Campbell P, Gonzalez R: Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol 2010, 76:5067-5078.
  • [215]Eppler T, Boos W: Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Mol Microbiol 1999, 33:1221-1231.
  • [216]Jenkins LS, Nunn WD: Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 1987, 169:42-52.
  • [217]Spratt SK, Ginsburgh CL, Nunn WD: Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J Bacteriol 1981, 146:1166-1169.
  • [218]Lennen RM, Pfleger BF: Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012, 30:659-667.
  • [219]Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A: The wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 2005, 187:1369-1376.
  • [220]Stöveken T, Steinbüchel A: Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed Engl 2008, 47:3688-3694.
  • [221]Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J: Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 2012, 5:7. BioMed Central Full Text
  • [222]Elbahloul Y, Steinbüchel A: Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p (Microdiesel) plasmid. Appl Environ Microbiol 2010, 76:4560-4565.
  • [223]Duan Y, Zhu Z, Cai K, Tan X, Lu X: De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS One 2011, 6:e20265.
  • [224]Somerville C: Biofuels. Curr Biol 2007, 17:R115-R119.
  • [225]Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D‘haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM: A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 2012, 7:e37010.
  • [226]Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A: Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 2006, 72:1373-1379.
  • [227]Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapudi S, Navarro P, Cross F, Roberts JM: Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS One 2013, 8:e58307.
  • [228]Yu KO, Jung J, Kim SW, Park CH, Han SO: Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 2012, 109:110-115.
  • [229]Saerens SM, Verstrepen KJ, Van Laere SD, Voet AR, Van Dijck P, Delvaux FR, Thevelein JM: The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 2006, 281:4446-4456.
  • [230]Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A: Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 2007, 189:918-928.
  • [231]Alvarez HM, Mayer F, Fabritius D, Steinbüchel A: Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 1996, 165:377-386.
  • [232]Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A: Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 2008, 154:2327-2335.
  • [233]Hernández MA, Arabolaza A, Rodriguez E, Gramajo H, Alvarez HM: The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 2013, 97:2119-2130.
  • [234]MacEachran DP, Prophete ME, Sinskey AJ: The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 2010, 76:7217-7225.
  • [235]Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H: Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 2008, 74:2573-2582.
  • [236]Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H: Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 2013, 12:9. BioMed Central Full Text
  • [237]Rodriguez E, Navone L, Casati P, Gramajo H: Impact of malic enzymes on antibiotic and triacylglycerol production in Streptomyces coelicolor. Appl Environ Microbiol 2012, 78:4571-4579.
  • [238]Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE: Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 2004, 186:5017-5030.
  • [239]Low KL, Shui G, Natter K, Yeo WK, Kohlwein SD, Dick T, Rao SP, Wenk MR: Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J Biol Chem 2010, 285:21662-21670.
  • [240]Walker RW: Barakat H. Hung JG: The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 1970, 5:684-691.
  • [241]Voss I, Steinbüchel A: High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 2001, 55:547-555.
  • [242]Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ: High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 2010, 147:212-218.
  • [243]Janßen HJ, Ibrahim MH, Bröker D, Steinbüchel A: Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express 2013, 3:38. BioMed Central Full Text
  • [244]Raetz CR, Newman KF: Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 1978, 253:3882-3887.
  • [245]Raetz CR, Newman KF: Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol 1979, 137:860-868.
  • [246]Rucker J, Paul J, Pfeifer BA, Lee K: Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions. Appl Microbiol Biotechnol 2013, 97:2753-2759.
  • [247]Kaczmarzyk D, Fulda M: Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 2010, 152:1598-1610.
  • [248]Hsieh HJ, Su CH, Chien LJ: Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 2012, 50:526-534.
  • [249]Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J: TAG, you’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 2012, 23:352-363.
  • [250]Williams CG: On the constitution of the essential oil of rue. Philos Trans R Soc Lond 1858, 148:199-204.
  • [251]Forney FW, Markovetz AJ: The biology of methyl ketones. J Lipid Res 1971, 12:383-395.
  • [252]Yu G, Nguyen TT, Guo Y, Schauvinhold I, Auldridge ME, Bhuiyan N, Ben-Israel I, Iijima Y, Fridman E, Noel JP, Pichersky E: Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol 2010, 154:67-77.
  • [253]Park J, Rodriguez-Moya M, Li M, Pichersky E, San KY, Gonzalez R: Synthesis of methyl ketones by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 2012, 39:1703-1712.
  • [254]Goh EB, Baidoo EE, Keasling JD, Beller HR: Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 2012, 78:70-80.
  • [255]Müller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, Lee TS, Hillson NJ, Chhabra SR, Singer SW, Beller HR: Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 2013, 79:4433-4439.
  • [256]Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, Schirmer A, Brubaker S, Del Cardayre SB: Production of fatty acids and derivatives thereof. 2007. WO/2007/136762
  • [257]Doan TT, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P: Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J Plant Physiol 2009, 166:787-796.
  • [258]Akhtar MK, Turner NJ, Jones PR: Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA 2013, 110:87-92.
  • [259]Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB: Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
  • [260]Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB: Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2013, 2:59-62.
  • [261]Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J: Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci USA 2013, 110:7636-7641.
  • [262]Rude MA, Baron TS, Brubaker S, Alibhai M, del Cardayre SB, Schirmer A: Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 2011, 77:1718-1727.
  • [263]Matsumoto K, Taguchi S: Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr Opin Biotechnol 2013, 24:1054-1060.
  • [264]Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H: Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 1992, 9:217-230.
  • [265]Rehm BH, Krüger N, Steinbüchel A: A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 1998, 273:24044-24051.
  • [266]Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B: Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 1988, 54:2924-2932.
  • [267]Kim Do Y, Kim HW, Chung MG, Rhee YH: Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 2007, 45:87-97.
  • [268]Fiedler S, Steinbüchel A, Rehm BH: PhaG-mediated synthesis of Poly (3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 2000, 66:2117-2124.
  • [269]Olivera ER, Carnicero D, Jodra R, Minambres B, García B, Abraham GA, Gallardo A, Román JS, García JL, Naharro G, Luengo JM: Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 2001, 3:612-618.
  • [270]Sun Z, Ramsay JA, Guay M, Ramsay BA: Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 2007, 74:69-77.
  • [271]Langenbach S, Rehm BH, Steinbüchel A: Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly (3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 1997, 150:303-309.
  • [272]Qi Q, Rehm BH, Steinbüchel A: Synthesis of poly (3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 1997, 157:155-162.
  • [273]Klinke S, Ren Q, Witholt B, Kessler B: Production of medium-chain-length poly (3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 1999, 65:540-548.
  • [274]Rehm BH, Steinbüchel A: Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli. Appl Microbiol Biotechnol 2001, 55:205-209.
  • [275]Park SJ, Lee SY: Biosynthesis of poly (3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 2004, 113–116:335-346.
  • [276]Zheng Z, Gong Q, Liu T, Deng Y, Chen JC, Chen GQ: Thioesterase II of Escherichia coli plays an important role in 3-hydroxydecanoic acid production. Appl Environ Microbiol 2004, 70:3807-3813.
  • [277]Nomura CT, Tanaka T, Gan Z, Kuwabara K, Abe H, Takase K, Taguchi K, Doi Y: Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes. Biomacromolecules 2004, 5:1457-1464.
  • [278]Agnew DE, Stevermer AK, Youngquist JT, Pfleger BF: Engineering Escherichia coli for production of C (1) (2)-C (1) (4) polyhydroxyalkanoate from glucose. Metab Eng 2012, 14:705-713.
  • [279]Vickers CE, Klein-Marcuschamer D, Krömer JO: Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 2012, 34:585-596.
  • [280]J-il C, Lee SY: Process analysis and economic evaluation for Poly (3-hydroxybutyrate) production by fermentation. Bioprocess Eng 1997, 17:335-342.
  • [281]Willke T, Vorlop K: Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Tech 2008, 110:831-840.
  • [282]Tao L, Aden A: The economics of current and future biofuels. In Vitro Cell Dev Biol 2009, 45:199-217.
  • [283]International Energy Agency: Biofuels for transport: an international perspective. Paris: International Energy Agency; 2004.
  • [284]Sabri S, Nielsen LK, Vickers CE: Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain. Appl Environ Microbiol 2013, 79:478-487.
  • [285]Rumbold K, van Buijsen HJ, Gray VM, van Groenestijn JW, Overkamp KM, Slomp RS, van der Werf MJ, Punt PJ: Microbial renewable feedstock utilization: a substrate-oriented approach. Bioeng Bugs 2010, 1:359-366.
  • [286]Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO: Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA 2013, 110:4021-4026.
  • [287]Kim JH, Block DE, Mills DA: Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2010, 88:1077-1085.
  • [288]Viitanen MI, Vasala A, Neubauer P, Alatossava T: Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli. Microb Cell Fact 2003, 2:2. BioMed Central Full Text
  • [289]Rosales-Colunga LM, Alvarado-Cuevas ZD, Razo-Flores E, Rodríguez Ade L: Maximizing hydrogen production and substrate consumption by Escherichia coli WDHL in cheese whey fermentation. Appl Biochem Biotechnol 2013, 171:704-715.
  • [290]Mazumdar S, Bang J, Oh MK: L-Lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 2013, 171:704-715.
  • [291]Zhang F, Carothers JM, Keasling JD: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012, 30:354-359.
  • [292]Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA: Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 2013, 4:1409.
  文献评价指标  
  下载次数:19次 浏览次数:2次