期刊论文详细信息
BMC Cancer
Progress risk assessment of oral premalignant lesions with saliva miRNA analysis
Ya-qin Zhu3  Zuo-jun Zhou3  Long Jiang3  Xi Yang1  Yue-xiu Li2  Ya Yang3 
[1]Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
[2]Department of Stomatology, Tai’an Central Hospital, Tai’an, Shandong, 271000, China
[3]Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine,Shanghai Key Laboratory of Stomatology, 639 Zhi Zao Ju Road, Shanghai, 200011, China
关键词: Salivary biomarker;    miRNAs;    Risk assessment;    Malignant transformation;    Oral leukoplakia;   
Others  :  1079861
DOI  :  10.1186/1471-2407-13-129
 received in 2012-12-26, accepted in 2013-03-13,  发布年份 2013
PDF
【 摘 要 】

Background

Oral cancer develops through multi-stages: from normal to mild (low grade) dysplasia (LGD), moderate dysplasia, and severe (high grade) dysplasia (HGD), to carcinoma in situ (CIS) and finally invasive oral squamous cell carcinomas (OSCC). Clinical and histological assessments are not reliable in predicting which precursor lesions will progress. The aim of this study was to assess the potential of a noninvasive approach to assess progress risk of oral precancerous lesions.

Methods

We first used microRNA microarray to profile progressing LGD oral premaligant lesions (OPLs) from non-progressing LGD OPLs in order to explore the possible microRNAs deregulated in low grade OPLs which later progressed to HGD or OSCC. We then used RT-qPCR to detect miRNA targets from the microarray results in saliva samples of these patients.

Results

We identified a specific miRNA signature that is aberrantly expressed in progressing oral LGD leukoplakias. Similar expression patterns were detected in saliva samples from these patients.

Conclusions

These results show promise for using saliva miRNA signature for monitoring of cancer precursor lesions and early detection of disease progression.

【 授权许可】

   
2013 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202210734137.pdf 1847KB PDF download
Figure 3. 35KB Image download
Figure 2. 172KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Napier SS, Speight PM: Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med 2008, 37(1):1-10.
  • [2]Tsao AS, Kim ES, Hong WK: Chemoprevention of cancer. CA Cancer J Clin 2004, 54(3):150-180.
  • [3]Wright JM: A review and update of oral precancerous lesions. Tex Dent J 1998, 115(6):15-19.
  • [4]Bouquot JE, Weiland LH, Kirland LT: Leukoplakia and carcinoma in situ synchronously associated with invasive oral/oropharyngeal carcinoma in Rochester, Minn., 1935–1984. Oral Surg Oral Med Oral Pathol 1988, 65(2):199-207.
  • [5]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 2002, 99(24):15524-15529.
  • [6]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.
  • [7]O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005, 435(7043):839-843.
  • [8]He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A microRNA polycistron as a potential human oncogene. Nature 2005, 435(7043):828-833.
  • [9]Fabian MR, Sonenberg N, Filipowicz W: Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010, 79:351-379.
  • [10]Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009, 15(17):5473-5477.
  • [11]Etheridge A, Lee I, Hood L, Galas D, Wang K: Extracellular microRNA: A new source of biomarkers. Mutat Res 2011, 717(1–2):85-90.
  • [12]Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K, Zuber J, James T, Khan AA, Leslie CS, Parker JS, Paddison PJ, Tam W, Ferrando A, Wendel HG: Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biol 2010, 12(4):372-379.
  • [13]Portela A, Esteller M: Epigenetic modifications and human disease. Nature Biotechnol 2010, 28(10):1057-1068.
  • [14]Herceg Z, Paliwal A: Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res 2011, 727(3):55-61.
  • [15]Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, Pintilie M, Jurisica I, Perez-Ordonez B, Gilbert R, Gullane P, Irish J, Kamel-Reid S: Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 2009, 18(24):4818-4829.
  • [16]Wiklund ED, Gao S, Hulf T, Sibbritt T, Nair S, Costea DE, Villadsen SB, Bakholdt V, Bramsen JB, Sørensen JA, Krogdahl A, Clark SJ, Kjems J: MicroRNA Alterations and Associated Aberrant DNA Methylation Patterns across Multiple Sample Types in Oral Squamous Cell Carcinoma. PLoS One 2011, 6(11):e27840.
  • [17]Axell T, Pindborg JJ, Smith CJ, van der Waal I: Oral white lesions with special reference to precancerous and tobacco-related lesions: conclusions of an international symposium held in Uppsala, Sweden, May 18–21 1994. J oral path med 1996, 25(2):49-54.
  • [18]von Brandenstein M, Pandarakalam JJ, Kroon L, Loeser H, Herden J, Braun G, Wendland K, Dienes HP, Engelmann U, Fries JW: MicroRNA 15a, inversely correlated to PKCα, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol 2012, 180(5):1787-1797.
  • [19]Spielmann N, Wong DT: Saliva: diagnostics and therapeutic perspectives. Oral Dis 2011, 17(4):345-354.
  • [20]Pekasky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM: Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006, 66(24):11590-11593.
  • [21]Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010, 39(4):493-506.
  • [22]Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshal K: TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010, 29(12):1787-1797.
  • [23]Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M, Volinia S, Taccioli C, Kipps TJ, Croce CM: miR-181b is a biomarker of disease progressiong in chronic lymphocytic leukemia. Blood 2011, 118(11):3072-3079.
  文献评价指标  
  下载次数:14次 浏览次数:11次