Acta Veterinaria Scandinavica | |
Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan | |
Tetsuo Asai2  Kaori Masani1  Chizuru Sato1  Mototaka Hiki2  Masaru Usui2  Kotaro Baba2  Manao Ozawa2  Kazuki Harada1  Hiroshi Aoki1  Takuo Sawada1  | |
[1] Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8601, Japan | |
[2] National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511 | |
关键词: phylogenetic grouping; AmpC β-lactamase; extended spectrum β-lactamase; cephalosporin resistance; food-producing animals; Escherichia coli; | |
Others : 789515 DOI : 10.1186/1751-0147-53-52 |
|
received in 2011-07-21, accepted in 2011-10-12, 发布年份 2011 | |
【 摘 要 】
A total of 318 Escherichia coli isolates obtained from different food-producing animals affected with colibacillosis between 2001 and 2006 were subjected to phylogenetic analysis: 72 bovine isolates, 89 poultry isolates and 157 porcine isolates. Overall, the phylogenetic group A was predominant in isolates from cattle (36/72, 50%) and pigs (101/157, 64.3%) whereas groups A (44/89, 49.4%) and D (40/89, 44.9%) were predominant in isolates from poultry. In addition, group B2 was not found among diseased food-producing animals except for a poultry isolate. Thus, the phylogenetic group distribution of E. coli from diseased animals was different by animal species. Among the 318 isolates, cefazolin resistance (minimum inhibitory concentrations: ≥32 μg/ml) was found in six bovine isolates, 29 poultry isolates and three porcine isolates. Of them, 11 isolates (nine from poultry and two from cattle) produced extended spectrum β-lactamase (ESBL). The two bovine isolates produced blaCTX-M-2, while the nine poultry isolates produced blaCTX-M-25 (4), blaSHV-2 (3), blaCTX-M-15 (1) and blaCTX-M-2 (1). Thus, our results showed that several types of ESBL were identified and three types of β-lactamase (SHV-2, CTX-M-25 and CTX-M-15) were observed for the first time in E. coli from diseased animals in Japan.
【 授权许可】
2011 Asai et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140704183424328.pdf | 233KB | download |
【 参考文献 】
- [1]Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000, 66:4555-4558.
- [2]Johnson JR, Delavari P, Kuskowski M, Stell AL: Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 2001, 183:78-88.
- [3]Carlos C, Pires MM, Stoppe NC, Hachich EM, Sato MI, Gomes TA, Amaral LA, Ottoboni LM: Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 2010, 10:161.
- [4]Unno T, Han D, Jang J, Lee SN, Ko G, Choi HY, Kim JH, Sadowsky MJ, Hur HG: Absence of Escherichia coli phylogenetic group B2 strains in humans and domesticated animals from Jeonnam Province, Republic of Korea. Appl Environ Microbiol 2009, 75:5659-5666.
- [5]Escobar-Paramo P, Le Menac'h A, Le Gall T, Amorin C, Gouriou S, Picard B, Skurnik D, Denamur E: Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 2006, 8:1975-1984.
- [6]Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK: Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005, 151:2097-2110.
- [7]Ewers C, Antao EM, Diehl I, Philipp HC, Wieler LH: Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 2009, 75:184-192.
- [8]Mora A, Lopez C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, et al.: Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol 2009, 9:132.
- [9]Harada K, Asai T: Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. J Biomed Biotechnol 2010, 2010:180682.
- [10]Kojima A, Ishii Y, Ishihara K, Esaki H, Asai T, Oda C, Tamura Y, Takahashi T, Yamaguchi K: Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Antimicrob Agents Chemother 2005, 49:3533-3537.
- [11]Shiraki Y, Shibata N, Doi Y, Arakawa Y: Escherichia coli producing CTX-M-2 beta-lactamase in cattle, Japan. Emerg Infect Dis 2004, 10:69-75.
- [12]Kojima A, Asai T, Ishihara K, Morioka A, Akimoto K, Sugimoto Y, Sato T, Tamura Y, Takahashi T: National monitoring for antimicrobial resistance among indicator bacteria isolated from food-producing animals in Japan. J Vet Med Sci 2009, 71:1301-1308.
- [13]CLSI: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 3rd edition. Approved standard M31-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
- [14]CLSI: Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. Wayne, PA.: Clinical and Laboratory Standards Institute; 2008.
- [15]Harada K, Asai T, Kojima A, Oda C, Ishihara K, Takahashi T: Antimicrobial susceptibility of pathogenic Escherichia coli isolated from sick cattle and pigs in Japan. J Vet Med Sci 2005, 67:999-1003.
- [16]Dallenne C, Da Costa A, Decre D, Favier C, Arlet G: Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010, 65:490-495.
- [17]Xu L, Ensor V, Gossain S, Nye K, Hawkey P: Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J Med Microbiol 2005, 54:1183-1187.
- [18]Mena A, Plasencia V, Garcia L, Hidalgo O, Ayestaran JI, Alberti S, Borrell N, Perez JL, Oliver A: Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol 2006, 44:2831-2837.
- [19]Pitout JD, Hossain A, Hanson ND: Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004, 42:5715-5721.
- [20]Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A: Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother 2006, 57:204-211.
- [21]Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y: A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 2000, 184:53-56.
- [22]Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, Wachino J, Suzuki S, Kimura K, Ishikawa S, Kato H, et al.: PCR classification of CTX-M-type beta-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. Antimicrob Agents Chemother 2006, 50:791-795.
- [23]Li XZ, Mehrotra M, Ghimire S, Adewoye L: beta-Lactam resistance and beta-lactamases in bacteria of animal origin. Vet Microbiol 2007, 121:197-214.
- [24]Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, Gouriou S, Picard B, Denamur E: Genetic background of Escherichia coli and extended-spectrum beta-lactamase type. Emerg Infect Dis 2005, 11:54-61.
- [25]Dhanji H, Murphy NM, Doumith M, Durmus S, Lee SS, Hope R, Woodford N, Livermore DM: Cephalosporin resistance mechanisms in Escherichia coli isolated from raw chicken imported into the UK. J Antimicrob Chemother 2010, 65:2534-2537.