期刊论文详细信息
Arthritis Research & Therapy
Transient anabolic effects accompany epidermal growth factor receptor signal activation in articular cartilage in vivo
John B Shepard2  Jae-Wook Jeong3  Nita J Maihle1  Sean O'Brien2  Caroline N Dealy4 
[1] Departments of Obstetrics and Gynecology, Pathobiology, and Pharmacology, Yale University, 310 Cedar Street, New Haven, CT 06520, USA
[2] Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030, USA
[3] Departments of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
[4] Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
关键词: Mig-6;    Cartilage repair;    Chondroprogenitors;    Progenitor cells;    Osteoarthritis;    Articular cartilage;    EGFR;    Epidermal growth factor receptor;   
Others  :  799225
DOI  :  10.1186/ar4233
 received in 2012-10-01, accepted in 2013-05-25,  发布年份 2013
PDF
【 摘 要 】

Introduction

Signals from the epidermal growth factor receptor (EGFR) have typically been considered to provide catabolic activities in articular cartilage, and accordingly have been suggested to have a causal role in osteoarthritis progression. The aim of this study was to determine in vivo roles for endogenous EGFR signal activation in articular cartilage.

Methods

Transgenic mice with conditional, limb-targeted deletion of the endogenous intracellular EGFR inhibitor Mig-6 were generated using CreLoxP (Mig-6-flox; Prx1Cre) recombination. Histology, histochemical staining and immunohistochemistry were used to confirm activation of EGFR signaling in the articular cartilage and joints, and to analyze phenotypic consequences of Mig-6 loss on articular cartilage morphology, proliferation, expression of progenitor cell markers, presence of chondrocyte hypertrophy and degradation of articular cartilage matrix.

Results

The articular cartilage of Mig-6-conditional knockout (Mig-6-cko) mice was dramatically and significantly thicker than normal articular cartilage at 6 and 12 weeks of age. Mig-6-cko articular cartilage contained a population of chondrocytes in which EGFR signaling was activated, and which were three to four times more proliferative than normal Mig-6-flox articular chondrocytes. These cells expressed high levels of the master chondrogenic regulatory factor Sox9, as well as high levels of putative progenitor cell markers including superficial zone protein (SZP), growth and differentiation factor-5 (GDF-5) and Notch1. Expression levels were also high for activated β-catenin and the transforming growth factor beta (TGF-β) mediators phospho-Smad2/3 (pSmad2/3). Anabolic effects of EGFR activation in articular cartilage were followed by catabolic events, including matrix degradation, as determined by accumulation of aggrecan cleavage fragments, and onset of hypertrophy as determined by type × collagen expression. By 16 weeks of age, the articular cartilage of Mig-6-cko knees was no longer thickened and was degenerating.

Conclusions

These results demonstrate unexpected anabolic effects of EGFR signal activation in articular cartilage, and suggest the hypothesis that these effects may promote the expansion and/or activity of an endogenous EGFR-responsive cell population within the articular cartilage.

【 授权许可】

   
2013 Shepard et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140707023949885.pdf 4834KB PDF download
Figure 8. 223KB Image download
Figure 7. 180KB Image download
Figure 6. 358KB Image download
Figure 5. 136KB Image download
Figure 4. 136KB Image download
Figure 3. 140KB Image download
Figure 2. 104KB Image download
Figure 1. 295KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Busija L, Bridgett L, Williams SR, Osborne RH, Buchbinder R, March L, Fransen M: Osteoarthritis. Best Pract Clin Rheumatol 2010, 24:757-768.
  • [2]Lotz MK, Fraus VB: New developments in osteoarthritis. Arthritis Res Ther 2010, 12:211-220. Erratum in Arthritis Res Ther 2010, 12:408. Kraus, Virginia B [added] BioMed Central Full Text
  • [3]Sun HB: Mechanical loading, cartilage degradation, and arthritis. Ann NY Acad Sci 2010, 1211:37-50.
  • [4]Fisher MC, Ferrari D, Yincui L, Shepard JB, Patterson SE, Anderson N, Dealy CN: The potential of human embryonic stem cells for articular cartilage repair and osteoarthritis treatment. Rheumatol Curr Res 2012, S3.
  • [5]Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994, 331:889-895.
  • [6]Gomoll AH: Microfracture and augments. J Knee Surg 2012, 25:9-15.
  • [7]Benthien JP, Schwaninger M, Behrens P: We do not have evidence based methods for the treatment of cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 2011, 19:543-552.
  • [8]Aigner T, Söder S, Gebhard PM, McAlinden A, Haag J: Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis-structure, chaos and senescence. Nat Clin Pract Rheumatol 2007, 3:391-399.
  • [9]Estes BT, Diekman BO, Gimble JM, Guilak F: Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 2010, 5:1294-1311.
  • [10]LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS: Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med 2008, 36:360-368.
  • [11]Dealy CN: Chondrogenic progenitors for cartilage repair and osteoarthritis treatment. Rheumatol Curr Res 2012, S3.
  • [12]McCarthy HE, Bara JJ, Brakspear K, Singhrao SK, Archer CW: The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J 2012, 192:345-351.
  • [13]Hattori S, Oxford C, Reddi AH: Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Comm 2007, 358:99-103.
  • [14]Pretzel D, Linss S, Rochler S, Endres M, Kaps C, Alsalameh S, Kinne RW: Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther 2011, 13:R64. BioMed Central Full Text
  • [15]Fickert S, Fiedler J, Brenner RE: Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 2004, 6:R422-R432. BioMed Central Full Text
  • [16]Dowthwaithe GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJR, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW: The surface of articular cartilage contains a progenitor population. J Cell Sci 2004, 117:889-897.
  • [17]Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwithe GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fariclough J, Briggs T, Archer CW: Identification and clonal characterization of a progenitor cell sub-population in normal human articular cartilage. PLoS One 2010, 5:e513246.
  • [18]Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M, Iwamoto M, Enomoto-Iwamoto M: Role of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 2011, 91:1739-1752.
  • [19]Grogan SP, Miyaki S, Asahara H, D'Lima DD, Lotz MK: Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 2009, 11:R85. BioMed Central Full Text
  • [20]Koelling S, Kruegel J, Immer M, Path JR, Sadowski B, Miro X, Miosge N: Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 2009, 4:324-335.
  • [21]Martin JA, Buckwalter JA: The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 2003, 85:106-110.
  • [22]Chang HX, Yang L, Li Z, Chen G, Dai G: Age-related biological characterization of mesenchymal progenitor cells in human articular cartilage. Orthopedics 2011, 34:e382-8.
  • [23]Adkisson HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Syedin M, Amendola A, Streeter PR, Buckwalter JA: The potential of human allogenic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 2010, 38:1324-1333.
  • [24]Zhang X, Siclari VA, Lan S, Zhu J, Koyama E, Dupuis HL, Enomoto-Iwamoto M, Beier F, Qin L: The critical role of the epidermal growth factor receptor in endochondral ossification. J Bone Miner Res 2011, 11:2622-2633.
  • [25]Schneider MR, Sibilia M, Erben RG: The EGFR network in bone biology and pathology. Trends Endocrinol Metab 2009, 20:517-524.
  • [26]Zhang YW, Su Y, Lanning N, Swiatek PJ, Bronson RT, Sigler R, Martin RW, Vande Woude GF: Targeted disruption of Mig-6 in the mouse genome leads to early onset degenerative joint disease. Proc Natl Acad Sci USA 2005, 102:11740-11745.
  • [27]Dealy CN, Scranton V, Cheng H-C: Roles of transforming growth factor-α and epidermal growth factor in chick limb development. Dev Biol 1998, 202:43-55.
  • [28]Yoon YM, Oh CD, Kim DY, Lee YS, Park JW, Hub TL, Kang SS, Chun JS: Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase c-alpha, Erk1 and p38MAPK signaling pathways. J Biol Chem 2000, 275:12353-12359.
  • [29]Verschure PJ, Joosten LA, van der Kraan PM, Van den Berg WB: Responsiveness of articular cartilage from normal and inflamed mouse knee joints to various growth factors. Ann Rheum Dis 1994, 53:455-460.
  • [30]Klooster A, Bernier SM: Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocytes. Arthritis Res Theory 2005, 7:R127-R138. BioMed Central Full Text
  • [31]Usmani SE, Appleton CT, Beier F: Transforming growth factor-alpha induces endothelin receptor-A expression in osteoarthritis. J Orthp Res 2012, 30:1391-1397.
  • [32]Appleton CT, Usmani SE, Bernier SM, Aigner T, Beier F: Transforming growth factor alpha suppression of articular chondrocyte phenotype and Sox9 expression in a rat model of osteoarthritis. Arthritis Rheum 2007, 56:3693-3705.
  • [33]Jakob M, Demarteau O, Schafer D, Hintermann B, Dick W, Heberer M, Martin I: Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem 2001, 81:368-377.
  • [34]Huh Y-H, Kim S-H, Kim S-J, Chun J-S: Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J Biol Chem 2003, 278:9691-9697.
  • [35]Takeda H, Inoue H, Kutsuna T, Matsushita N, Takahashi T, Watanabe S, Higashiyama S, Yamamoto H: Activation of epidermal growth factor receptor gene is involved in transforming growth factor-β-mediated fibronectin expression in a chondrogenic progenitor cell line. Int J Mol Med 2010, 25:593-600.
  • [36]Appleton CT, McErlain DD, Henry JL, Holdsworth DW, Beier F: Molecular and histological analysis of a new rat model of experimental knee osteoarthritis. Ann NY Acad Sci 2007, 1117:165-174.
  • [37]Hackel PO, Gishizky M, Ullrich A: Mig6 is a negative regulator of the Epidermal Growth Factor Receptor signal. Biol Chem 2001, 382:1649-1662.
  • [38]Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ: Expression of Cre Recombinase in the developing mouse limb bud driven by a Prx1 enhancer. Genesis 2002, 33:77-80.
  • [39]Jin N, Gilbert JL, Broaddus RR, DeMayo FJ, Jeong J-W: Generation of a Mig6-conditional null allele. Genesis 2007, 45:716-721.
  • [40]Fisher M, Meyer C, Garber G, Dealy CN: Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth. Bone 2005, 37:741-750.
  • [41]Watkins DJ, Zhou Y, Chen CL, Darbyshire A, Besner GE: Heparan-binding epidermal growth factor like-growth factor protects mesenchymal stem cells. J Surg Res 2012, 177:359-364.
  • [42]Kerpedjieva SS, Kim DS, Barbeau DJ, Tamama K: EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1. Stem Cells 2012, 21:2541-2551.
  • [43]Omi M, Maihle NJ, Fisher M, Dealy CN: Studies on EGF receptor signaling in vertebrate limb patterning. Dev Dyn 2005, 233:288-300.
  • [44]Fisher MC, Clinton GM, Maihle NJ, Dealy CN: Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev Growth Differ 2007, 49:503-513.
  • [45]Dexheimer V, Frank S, Richter W: Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells. Stem Cells Dev 2012, 21:2160-2169.
  • [46]Karlsson C, Thornemo M, Henricksson HB, Lindahl A: Identification of a stem cell niche in the zone of Ranvier. J Anat 2009, 215:355-363.
  • [47]Dy P, Smits P, Silvester A, Penzo-Méndez A, Dumitriu B, Han Y, de la Motte CA, Kingsley DM, Lefebvre V: Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol 2010, 341:346-359.
  • [48]Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M: A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 2008, 316:62-73.
  • [49]van der Kraan PM, Blaney Davidson EN, Van den Berg WB: A role for age-related changes in TGFβ signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther 2010, 12:201. BioMed Central Full Text
  • [50]Lee SY, Nakagawa T, Reddi AH: Induction of chondrogenesis and superficial zone protein (SZP)/lubricin expression by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-β1 and BMP-7. Biochem Biophy Res Comm 2008, 376:148-153.
  • [51]Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C, Rosier RN, O'Keefe RJ, Zuscik M, Chen D: Activation of β-catenin signaling in articular chondrocytes leads to an osteoarthritic like phenotype in adult beta catenin conditional activation mice. J Bone Miner Res 2009, 24:12-21.
  • [52]Yuasa T, Kondo N, Yasuhara R, Shimono K, Mackem S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M: Transient activation of Wnt/beta-catenin signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol 2009, 175:1933-2003.
  • [53]Uchiyama-Tanaka Y, Matsubara H, Mori Y, Kosaki A, Kishimoto N, Amano K, Higashiyama S, Iwasaka T: Involvement of the HB-EGF and EGF receptor transactivation in TGF-beta mediated fibronectin expression in mesangial cells. Kidney Int 2002, 62:799-808.
  • [54]Wendt MK, Smith JA, Schiemann WP: Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor dependent breast cancer progression. Oncogene 2010, 29:6485-6498.
  • [55]Hu T, Li C: Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer 2010, 9:236.
  • [56]Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, Liu J, Zeng H, Jiang T, Pu P, Kang C: Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 2010, 1366:27-37.
  • [57]Guteri KK, Mandal T, Chatterjee A, Sarkar M, Bhattacharya S, Chatterjee U, Ghosh MK: Mechanism of β-catenin mediated transcriptional regulation of epidermal growth factor receptor expression in glycogen synthase kinase 2 B-inactivated prostate cancer cells. J Biol Chem 2012, 287:18287-18296.
  • [58]Segatto O, Anastasi S, Alema S: Regulation of epidermal growth factor receptor signaling by inducible feedback inhibitors. J Cell Sci 2011, 124:1785-1793.
  • [59]Zhang Y-W, Vande Woude GF: Mig-6, signal transduction, stress response and cancer. Cell Cycle 2007, 6:507-513.
  • [60]Wilken JA, Badri T, Cross S, Raji R, Santin AD, Schwartz P, Branscum AJ, Baron AT, Sakhitab AI, Maihle NJ: EGFR/HER-targeted therapeutics in ovarian cancer. Future Med Chem 2012, 4:447-469.
  • [61]Ferby I, Reschke M, Kudlacek O, Knyazev P, Pante G, Amann K, Sommergruber W, Kraut N, Ullrich A, Fassler R, Kelin R: Mig6 is a negative regulator of EGF receptor mediated skin morphogenesis and tumor formation. Nat Med 2006, 12:568-573.
  • [62]Burton-Wurster N, Mateescu RG, Todhunter RJ, Clements KM, Sun Q, Scarpino V, Lust G: Genes in canine articular cartilage that resond to mechanical injury: gene expression studies with Affymetrix canine GeneChip. J Hered 2005, 96:821-828.
  • [63]Gomez-Camarillo MA, Almonte-Becerril M, Vasquez Tort M, Tapia-Ramirez J, Kouri Flores JB: Chondrocyte proliferation in a new culture system. Cell Prolif 2009, 442:207-218.
  • [64]Beerlie RR, Hynes NE: Epidermal growth factor related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 1996, 271:6071-6076.
  • [65]Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000, 19:3159-3167.
  • [66]Fiorentino L, Pertica C, Fiorini M, Talora C, Crescenzi M, Castellani L, Alema S, Benedetti P, Segatto O: Inhibition of ErbB2-mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol Cell Biol 2000, 20:7735-7750.
  • [67]Lin C-L, Du J, Shen WT, Whang EE, Donner DB, Griff N, He F, Moore FD, Clark OH, Ruan DT: Mitogen-inducible gene-6 is a multifunctional adapter protein with tumor suppressor like activity in papillary thyroid cancer. J Clin Endocrinol Metab 2011, 96:E554-E565.
  • [68]Pante G, Thompson J, Lamballe F, Iwata T, Ferby I, Barr FA, Davies AM, Maina F, Klein R: Mitogen-inducible gene-6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite outgrowth. J Cell Biol 2005, 171:337-348.
  • [69]Bau B, McKenna LA, Soeder S, Fan Z, Pecht A, Aigner T: Hepatocyte growth factor/scatter factor is not a potent regulator of anabolic and catabolic gene expression in adult normal articular chondrocytes. Biochem Biophys Res Commun 2004, 316:984-990.
  • [70]Hughes LC, Archer CW, ap Gwynn I: The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarized light and scanning electron microscope study and review. Eur Cell Mater 2005, 9:68-84.
  • [71]Goldring MB: Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 2012, 4:269-285.
  • [72]van der Kraan PM, Van den Berg WB: Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cart 2012, 20:223-232.
  文献评价指标  
  下载次数:96次 浏览次数:18次