期刊论文详细信息
BMC Bioinformatics
Finding gene regulatory network candidates using the gene expression knowledge base
Aravind Venkatesan1  Sushil Tripathi2  Alejandro Sanz de Galdeano3  Ward Blondé1  Astrid Lægreid2  Vladimir Mironov1  Martin Kuiper1 
[1] Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
[2] Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
[3] Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, 28029, Spain
关键词: Gastrin biology;    Hypothesis assessment;    Target gene interaction;    Transcription factor;    Protein-protein interaction;    Transcription regulation;    Gene expression;    Network extension;    SPARQL;    RDF;    Semantic Web;    Semantic Systems Biology;    Knowledge representation;    Knowledge management;   
Others  :  1084513
DOI  :  10.1186/s12859-014-0386-y
 received in 2014-04-01, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of ‘omics’ data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis.

Results

We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions.

Conclusions

Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

【 授权许可】

   
2014 Venkatesan et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150113162229658.pdf 1973KB PDF download
Figure 6. 36KB Image download
Figure 5. 38KB Image download
20150131111925769.pdf 1519KB PDF download
Figure 3. 36KB Image download
Figure 2. 74KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Weake VM, Workman JL: Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 2010, 11:426-437.
  • [2]Perissi V, Jepsen K, Glass CK, Rosenfeld MG: Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 2010, 11:109-123.
  • [3]Thomas MC, Chiang CM: The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006, 41:105-178.
  • [4]Mitchell PJ, Tjian R: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989, 245:371-378.
  • [5]Davidson SB, Overton C, Buneman P: Challenges in integrating biological data sources. J Comput Biol 1995, 2:557-572.
  • [6]Goble C, Stevens R: State of the nation in data integration for bioinformatics. J Biomed Inform 2008, 41:687-693.
  • [7]Berners-Lee T, Hendler J: Publishing on the semantic web. Nature 2001, 410:1023-1024.
  • [8]Resource Description Framework. [http://www.w3.org/RDF/]
  • [9]RDF Schema. 2004 [http://www.w3.org/TR/2004/REC-rdf-schema-20040210/]
  • [10]Web Ontology Language. [http://www.w3.org/TR/owl2-profiles/]
  • [11]SPARQL Query Language. [http://www.w3.org/TR/rdf-sparql-query/]
  • [12]Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, Consortium OBI, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007, 25:1251-1255.
  • [13]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.
  • [14]Barrell D, Dimmer E, Huntley RP, Binns D, O’Donovan C, Apweiler R: The GOA database in 2009–an integrated gene ontology annotation resource. Nucleic Acids Res 2009, 37:D396-D403.
  • [15]Antezana E, Mironov V, Kuiper M: Biological knowledge management: the emerging role of the Semantic Web technologies. Brief Bioinform 2009, 10(4):392-407.
  • [16]Hoehndorf R, Dumontier M, Gkoutos GV: Evaluation of research in biomedical ontologies. Brief Bioinform 2013, 14(6):696-712.
  • [17]Dumontier M, Villanueva RN: Towards pharmacogenomics knowledge discovery with the semantic web. Brief Bioinform 2009, 10(2):153-163.
  • [18]Venkatesan A, Mironov V, Kuiper M: Towards an integrated knowledge system for capturing gene expression events.Proc. of the 3rd International Conference on Biomedical Ontology, KR-MED Series, Graz, Austria. R Cornet and R. Stevens eds, CEUR Workshop Proceedings, Vol. 897, CEUR-WS.org, 2012, pp. 85–90.
  • [19]Selvik LK, Fjeldbo CS, Flatberg A, Steigedal TS, Misund K, Anderssen E, Doseth B, Langaas M, Tripathi S, Beisvag V, Lægreid A, Thommesen L, Bruland T: The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis.BMC Genomics 2013, 14(1):429.
  • [20]Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pedro Pereira R, Pilicheva E, Rung J, Sharma A, Tang YA, Ternent T, Tikhonov A, Welter D, Williams E, Brazma A, Parkinson H, Sarkans U: ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res 2013, 41(D1):D987-D990.
  • [21]Tripathi S: Laying the Foundations for Gastrin Systems Biology: Conceptual Models and Knowledge Resources to Enhance Research on Gastrin Mediated Intracellular Signaling and Gene Regulation, PhD thesis. Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine; 2013.
  • [22]Dolcet X, Llobet D, Pallares J, Matias-Guiu X: NF-kB in development and progression of human cancer. Virchows Arch 2005, 446:475-482.
  • [23]Hiraoka S, Miyazaki Y, Kitamura S, Toyota M, Kiyohara T, Shinomura Y, Mukaida N, Matsuzawa Y: Gastrin induces CXC chemokine expression in gastric epithelial cells through activation of NF-kappaB. Am J Physiol Gastrointest Liver Physiol 2001, 281:G735-G742.
  • [24]Varro A, Noble PJ, Pritchard DM, Kennedy S, Hart CA, Dimaline R, Dockray GJ: Helicobacter pylori induces plasminogen activator inhibitor 2 in gastric epithelial cells through nuclear factor-kappaB and RhoA: implications for invasion and apoptosis. Cancer Res 2004, 64:1695-1702.
  • [25]Hinz M, Arslan SÇ, Scheidereit C: It takes two to tango: IκBs, the multifunctional partners of NF‐κB. Immunol Rev 2012, 246(1):59-76.
  • [26]He H, Shulkes A, Baldwin GS: PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim Biophys Acta 2008, 1783:1943-1954.
  • [27]Pradeep A, Sharma C, Sathyanarayana P, Albanese C, Fleming JV, Wang TC, Wolfe MM, Baker KM, Pestell RG, Rana B: Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene 2004, 23:3689-3699.
  • [28]Subramaniam D, Ramalingam S, May R, Dieckgraefe BK, Berg DE, Pothoulakis C, Houchen CW, Wang TC, Anant S: Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: differential transcriptional and posttranscriptional mechanisms. Gastroenterology 2008, 134:1070-1082.
  • [29]Antezana E, Egaña M, De Baets B, Kuiper M, Mironov V: ONTO-PERL: an API for supporting the development and analysis of bio-ontologies. Bioinformatics 2008, 24:885-887.
  • [30]Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, Bader GD, Xenarios I, Wojcik J, Sherman D, Tyers M, Salama JJ, Moore S, Ceol A, Chatr-Aryamontri A, Oesterheld M, Stümpflen V, Salwinski L, Nerothin J, Cerami E, Cusick ME, Vidal M, Gilson M, Armstrong J, Woollard P, Hogue C, Eisenberg D, Cesareni G, Apweiler R, Hermjakob H: Broadening the horizon--level 2.5 of the HUPO-PSI format for molecular interactions.BMC Biol 2007, 9(5):44.
  • [31]Blondé W, Mironov V, Venkatesan A, Antezana E, De Baets B, Kuiper M: Reasoning with bio-ontologies: using relational closure rules to enable practical querying. Bioinformatics 2011, 27:1562-1568.
  • [32]Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H: IntAct - open source resource for molecular interaction data. Nucleic Acids Res 2007, 35:D561-D565.
  • [33]Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30.
  • [34]Ekseth OK, Kuiper M, Mironov V: OrthAgogue: an agile tool for the rapid prediction of orthology relations. Bioinformatics 2014, 30:734-736.
  • [35]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
  • [36]Magrane M, UniProt Consortium: UniProt Knowledgebase: a hub of integrated protein data.Database 2011, 2011:bar009.
  • [37]Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church DM, DiCuccio M, Edgar R, Federhen S, Helmberg W, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pontius JU, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2005, 33:D39-D45.
  • [38]OBO format. [http://www.geneontology.org/GO.format.obo-1_2.shtml]
  • [39]UniProt ID mapping. [ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping.dat.gz]
  • [40]Portales-Casamar E, Arenillas D, Lim J, Swanson MI, Jiang S, McCallum A, Kirov S, Wasserman WW: The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences. Nucleic Acids Res 2009, 37(Database issue):D54-D60.
  • [41]Bovolenta LA, Acencio ML, Lemke N: HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions.BMC Genomics 2012, 13(1):405.
  • [42]Essaghir A, Toffalini F, Knoops L, Kallin A, van Helden J, Demoulin JB: Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data. Nucleic Acids Res 2010, 38(11):e120-e120.
  • [43]Chawla K, Tripathi S, Thommesen L, Lægreid A, Kuiper M: TFcheckpoint: a curated compendium of specific DNA-binding RNA polymerase II transcription factors. Bioinformatics 2013, 29(19):2519-2520.
  • [44]Openlink Virtuoso. [http://virtuoso.openlinksw.com]
  • [45]GeXKB SPARQL endpoint. [http://www.semantic-systems-biology.org/apo/queryingcco/sparql]
  • [46]SPARQL update language. [http://www.w3.org/TR/sparql11-update/]
  • [47]Antezana E, Egaña M, Blondé W, Illarramendi A, Bilbao I, De Baets B, Stevens R, Mironov V, Kuiper M: The Cell Cycle Ontology: an application ontology for the representation and integrated analysis of the cell cycle process.Genome Biol 2009, 10:R58.
  • [48]Antezana E, Blondé W, Egaña M, Rutherford A, Stevens R, De Baets B, Mironov V, Kuiper M: BioGateway: a semantic systems biology tool for the life sciences.BMC Bioinformatics 2009, 10:S11.
  • [49]Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 2008, 41:706-716.
  • [50]Momtchev V, Peychev D, Primov T, Georgiev G: Expanding the Pathway and Interaction Knowledge in Linked Life Data. In Proc. of International Semantic Web Challenge 2009. Amsterdam: 2009.
  • [51]Jupp S, Klein J, Schanstra J, Stevens R: Developing a kidney and urinary pathway knowledge base.J Biomed Semantics 2011, 17(2):S7.
  • [52]Semanticscience Integrated Ontology. [https://code.google.com/p/semanticscience/wiki/SIO]
  • [53]Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, et al.: The BioPAX community standard for pathway data sharing. Nat Biotechnol 2010, 28:935-942.
  • [54]Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 2008, 36:D344-D350.
  • [55]Information Artifact Ontology. [https://code.google.com/p/information-artifact-ontology/]
  • [56]Montecchi-Palazzi L, Beavis R, Binz PA, Chalkley RJ, Cottrell J, Creasy D, Shofstahl J, Seymour SL, Garavelli JS: The PSI-MOD community standard for representation of protein modification data. Nat Biotechnol 2008, 26(8):864-866.
  • [57]Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, Malone J, Parkinson H, Peters B, Rocca-Serra P, Ruttenberg A, Sansone SA, Soldatova LN, Stoeckert CJ Jr, Turner JA, Zheng J, OBI consortium: Modeling biomedical experimental processes with OBI.J Biomed Semantics 2010, 1(Suppl 1):S7.
  • [58]Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C: Relations in biomedical ontologies.Genome Biol 2005, 6(5):R46.
  • [59]Blondé W, Antezana E, Mironov V, Schulz S, Kuiper M, De Baets B: Using the relation ontology Metarel for modelling linked data as multi-digraphs. Semantic Web J 2014, 5(2):115-126.
  • [60]Heath T, Bizer C: Linked Data: Evolving the Web into a Global Data Space (1st edition). Synth Lect on the Semantic Web: Theory and Technol 2011, 1(1):1-136.
  • [61]Tipney HJ, Leach SM, Feng W, Spritz R, Williams T, Hunter L: Leveraging existing biological knowledge in the identification of candidate genes for facial dysmorphology.BMC Bioinformatics 2009, 10(Suppl 2):S12.
  • [62]Wu G, Stein L: A network module-based method for identifying cancer prognostic signatures.Genome Biol 2012, 13:R112.
  • [63]Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 2006, 78:1011-1025.
  • [64]Hauge C, Frödin M: RSK and MSK in MAP kinase signalling. J Cell Sci 2006, 119:3021-3023.
  • [65]Delghandi MP, Johannessen M, Moens U: The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 2005, 17:1343-1351.
  • [66]Wu GY, Deisseroth K, Tsien RW: Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 2001, 98:2808-2813.
  • [67]Johannessen M, Delghandi MP, Rykx A, Dragset M, Vandenheede JR, Van Lint J, Moens U: Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. J Biol Chem 2007, 282:14777-14787.
  • [68]Evans IM, Bagherzadeh A, Charles M, Raynham T, Ireson C, Boakes A, Kelland L, Zachary IC: Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 2010, 429:565-572.
  • [69]Oh KJ, Park J, Kim SS, Oh H, Choi CS, Koo SH: TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver.PLoS Genet 2012, 8:e1002986.
  • [70]Monteserin-Garcia J, Al-Massadi O, Seoane LM, Alvarez CV, Shan B, Stalla J, Paez-Pereda M, Casanueva FF, Stalla GK, Theodoropoulou M: Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis.FASEB J 2013, 1:11.
  • [71]Katoh Y, Takemori H, Min L, Muraoka M, Doi J, Horike N, Okamoto M: Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. Eur J Biochem 2004, 271:4307-4319.
  • [72]Shaywitz AJ, Dove SL, Kornhauser JM, Hochschild A, Greenberg ME: Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein. Mol Cell Biol 2000, 20(24):9409-9422.
  • [73]Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE: Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 1997, 91:741-752.
  文献评价指标  
  下载次数:95次 浏览次数:16次