期刊论文详细信息
BMC Bioinformatics
Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition
B. Mathew1  A. Schmitz1  S. Muñoz-Descalzo2  N. Ansari1  F. Pampaloni1  E.H.K. Stelzer1  S.C. Fischer1 
[1] Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, Frankfurt am Main, 60438, Germany
[2] Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
关键词: mouse embryo;    spheroid;    three-dimensional microscopy;    clustering;    approximately convex decomposition;    algorithm;    image processing;    Image segmentation;   
Others  :  1232213
DOI  :  10.1186/s12859-015-0617-x
 received in 2014-12-17, accepted in 2015-05-18,  发布年份 2015
【 摘 要 】

Background

Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset.

Results

We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91 %) whereas the other methods each failed for at least one dataset (F-measure ≤ 69 %). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values.

Conclusion

We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.

【 授权许可】

   
2015 Mathew et al.

附件列表
Files Size Format View
Fig. 9. 17KB Image download
Fig. 8. 95KB Image download
Fig. 7. 19KB Image download
Fig. 6. 34KB Image download
Fig. 5. 174KB Image download
Fig. 4. 33KB Image download
Fig. 3. 73KB Image download
Fig. 2. 25KB Image download
Fig. 1. 22KB Image download
Fig. 9. 17KB Image download
Fig. 8. 95KB Image download
Fig. 7. 19KB Image download
Fig. 6. 34KB Image download
Fig. 5. 174KB Image download
Fig. 4. 33KB Image download
Fig. 3. 73KB Image download
Fig. 2. 25KB Image download
Fig. 1. 22KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011; 17:320-9.
  • [2]Harjanto D, Zaman MH. Matrix mechanics and receptor-ligand interactions in cell adhesion. Org Biomol Chem. 2010; 8:299-304.
  • [3]Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988; 240:177-84.
  • [4]Day RN, Schaufele F. Imaging molecular interactions in living cells. Mol Endocrinol. 2005; 19:1675-86.
  • [5]Ponomarev V. Nuclear imaging of cancer cell therapies. J Nucl Med. 2009; 50:1013-6.
  • [6]Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME et al.. Biological imaging software tools. Nat Methods. 2012; 9:697-710.
  • [7]Pawley J. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science+Business Media, LLC, New York; 2006.
  • [8]Lou X, Kang M, Xenopoulos P, Muñoz-Descalzo S, Hadjantonakis A-K. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports. 2014; 2:382-97.
  • [9]Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004; 305:1007-9.
  • [10]Greger K, Swoger J, Stelzer EHK. Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum. 2007; 78:23705.
  • [11]Stelzer EHK. Light-sheet fluorescence microscopy for quantitative biology. Nat Methods. 2014; 12:23-6.
  • [12]Pampaloni F, Richa R, Ansari N, Stelzer EHK. Advanced Fluorescence Microscopy, Methods and Protocols. Springer Science+Business Media, LLC, New York; 2015.
  • [13]Strobl F, Stelzer EHK. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development. 2014; 141:2331-8.
  • [14]Keller PJ, Stelzer EHK. Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy. Curr Opin Neurobiol. 2008; 18:624-32.
  • [15]Malpica N, de Solórzano CO, Vaquero JJ, Santos A, Vallcorba I, García-Sagredo JM et al.. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997; 28:289-97.
  • [16]Gniadek TJ, Warren G. WatershedCounting3D: a new method for segmenting and counting punctate structures from confocal image data. Traffic. 2007; 8:339-46.
  • [17]Wählby C, Bengtsson E. Segmentation of cell nuclei in tissue by combining seeded watersheds with gradient information. Springer Verlag Berlin Heidelb. 2003;408–414.
  • [18]Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng. 2010; 57:841-52.
  • [19]Qi J. Dense nuclei segmentation based on graph cut and convexity-concavity analysis. J Microsc. 2014; 253:42-53.
  • [20]Sommer C, Straehle C, Kothe U, Hamprecht FA. Ilastik: Interactive learning and segmentation toolkit. IEEE Int Symp Biomed Imaging From Nano to Macro. 2011; 2011:230-3.
  • [21]Chen C, Wang W, Ozolek JA, Lages N, Altschuler SJ, Wu LF, Rohde GK. A template matching approach for segmenting microscopy images. In International Symposium on Biomedical Imaging; 2012:768–771.
  • [22]Li G, Liu T, Tarokh A, Nie J, Guo L, Mara A et al.. 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol. 2007; 8:40. BioMed Central Full Text
  • [23]Delgado-Gonzalo R, Chenouard N, Unser M. Spline-based deforming ellipsoids for interactive 3D bioimage segmentation. IEEE Trans Image Process. 2013; 22:3926-40.
  • [24]Harder N, Bodnar M, Eils R, Spector DL, Rohr K. 3D segmentation and quantification of mouse embryonic stem cells in fluorescence microscopy images. In: Bildverarbeitung für die Medizin. Springer, Berlin Heidelberg; 2011: p.34-8. Informatik Aktuell
  • [25]Yu D, Pham TD, Zhou X. Analysis and recognition of touching cell images based on morphological structures. Comput Biol Med. 2009; 39:27-39.
  • [26]Zhong Q, Zhou P, Yao Q, Mao K. A novel segmentation algorithm for clustered slender-particles. Comput Electron Agric. 2009; 69:118-27.
  • [27]Chen L, Chan LLH, Zhao Z, Yan H. A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images. BMC Bioinformatics. 2013; 14:328. BioMed Central Full Text
  • [28]Mikula K, Remesiková M, Stasová O, Peyriéras N. Segmentation and analysis of 3D zebrafish cell image data. In International Congress on Image and Signal Processing; 2010:1444–48.
  • [29]Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Reconstruction of zebrafish early light sheet microscopy. Science. 2008; 322:1065-9.
  • [30]Indhumathi C, Cai YY, Guan YQ, Opas M. An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images. J Microsc. 2011; 243:60-76.
  • [31]Zanella C, Campana M, Rizzi B, Melani C, Sanguinetti G, Bourgine P et al.. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis. IEEE Trans Image Process. 2009; 19:770-81.
  • [32]Bashar MK, Yamagata K, Kobayashi TJ. Improved and robust detection of cell nuclei from four dimensional fluorescence images. PLoS One. 2014; 9:e101891.
  • [33]Bilgin CC, Kim S, Leung E, Chang H, Parvin B. Integrated profiling of three dimensional cell culture models and 3D microscopy. Bioinformatics. 2013; 29:3087-93.
  • [34]Lien J, Amato NM. Approximate convex decomposition of polyhedra. In ACM symposium on Solid and physical modeling; 2006:121–131.
  • [35]Attene M, Mortara M, Spagnuolo M, Falcidieno B. Hierarchical convex approximation of 3D shapes for fast region selection. Comput Graph Forum. 2008; 27:1323-32.
  • [36]Asafi S, Goren A, Cohen-Or D. Weak Convex Decomposition by Lines-of-sight. Comput Graph Forum. 2013; 32:23-31.
  • [37]Ward JJH. Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc. 1963; 58:236-44.
  • [38]Plugin for auto local threshold (ImageJ). [http://fiji.sc/wiki/index.php/Auto_Local_Threshold]
  • [39]Physikalische Biologie. [https://www.physikalischebiologie.de/downloads]
  • [40]FARSight. [http://www.farsight-toolkit.org]
  • [41]3D ImageJ Suite. [http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start]
  • [42]Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. TANGO: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 2013; 29:1840-1.
  • [43]ilastik. [http://ilastik.org/]
  • [44]Song Y, Cai W, Huang H, Wang Y, Feng DD, Chen M. Region-based progressive localization of cell nuclei in microscopic images with data adaptive modeling. BMC Bioinformatics. 2013; 14:173. BioMed Central Full Text
  • [45]Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012; 504:183-200.
  • [46]Bai X, Sun C, Zhou F. Splitting touching cells based on concave points and ellipse fitting. Pattern Recognit. 2009; 42:2434-46.
  • [47]Latorre A, Alonso-Nanclares L, Muelas S, Peña J-M, Defelipe J. 3D segmentations of neuronal nuclei from confocal microscope image stacks. Front Neuroanat. 2013; 7:49.
  • [48]Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007; 8:839-45.
  • [49]Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis A-K. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis. 2013; 51:219-33.
  文献评价指标  
  下载次数:213次 浏览次数:38次