期刊论文详细信息
BMC Bioinformatics
Developing a powerful In Silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome
Muneef Ayyash1  Hashem Tamimi1  Yaqoub Ashhab1 
[1] Biotechnology Research Centre, Palestine Polytechnic University, PO-Box: 198, Hebron, Palestine
关键词: Pattern recognition;    Bioinformatic tool;    Human proteome;    Position-Specific Scoring Matrix (PSSM);    Cleavage site prediction;    Caspase substrates;    Caspase-3;    Apoptosis;   
Others  :  1121923
DOI  :  10.1186/1471-2105-13-14
 received in 2011-09-13, accepted in 2012-01-23,  发布年份 2012
PDF
【 摘 要 】

Background

Caspases are a family of cysteinyl proteases that regulate apoptosis and other biological processes. Caspase-3 is considered the central executioner member of this family with a wide range of substrates. Identification of caspase-3 cellular targets is crucial to gain further insights into the cellular mechanisms that have been implicated in various diseases including: cancer, neurodegenerative, and immunodeficiency diseases. To date, over 200 caspase-3 substrates have been identified experimentally. However, many are still awaiting discovery.

Results

Here, we describe a powerful bioinformatics tool that can predict the presence of caspase-3 cleavage sites in a given protein sequence using a Position-Specific Scoring Matrix (PSSM) approach. The present tool, which we call CAT3, was built using 227 confirmed caspase-3 substrates that were carefully extracted from the literature. Assessing prediction accuracy using 10 fold cross validation, our method shows AUC (area under the ROC curve) of 0.94, sensitivity of 88.83%, and specificity of 89.50%. The ability of CAT3 in predicting the precise cleavage site was demonstrated in comparison to existing state-of-the-art tools. In contrast to other tools which were trained on cleavage sites of various caspases as well as other similar proteases, CAT3 showed a significant decrease in the false positive rate. This cost effective and powerful feature makes CAT3 an ideal tool for high-throughput screening to identify novel caspase-3 substrates.

The developed tool, CAT3, was used to screen 13,066 human proteins with assigned gene ontology terms. The analyses revealed the presence of many potential caspase-3 substrates that are not yet described. The majority of these proteins are involved in signal transduction, regulation of cell adhesion, cytoskeleton organization, integrity of the nucleus, and development of nerve cells.

Conclusions

CAT3 is a powerful tool that is a clear improvement over existing similar tools, especially in reducing the false positive rate. Human proteome screening, using CAT3, indicate the presence of a large number of possible caspase-3 substrates that exceed the anticipated figure. In addition to their involvement in various expected functions such as cytoskeleton organization, nuclear integrity and adhesion, a large number of the predicted substrates are remarkably associated with the development of nerve tissues.

【 授权许可】

   
2012 Ayyash et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150213020051281.pdf 494KB PDF download
Figure 6. 22KB Image download
Figure 5. 30KB Image download
Figure 4. 52KB Image download
Figure 3. 27KB Image download
Figure 2. 54KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Degterev A, Boyce M, Yuan J: A decade of caspases. Oncogene 2003, 22(53):8543-8567.
  • [2]Chowdhury I, Tharakan B, Bhat GK: Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol 2008, 151(1):10-27.
  • [3]Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004, 5(11):897-907.
  • [4]Riedl SJ, Salvesen GS: The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 2007, 8(5):405-413.
  • [5]Salvesen GS, Riedl SJ: Caspase mechanisms. Adv Exp Med Biol 2008, 615:13-23.
  • [6]Luthi AU, Martin SJ: The CASBAH: a searchable database of caspase substrates. Cell Death Differ 2007, 14(4):641-650.
  • [7]Kuranaga E, Miura M: Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 2007, 17(3):135-144.
  • [8]Yi CH, Yuan J: The Jekyll and Hyde functions of caspases. Dev Cell 2009, 16(1):21-34.
  • [9]Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, et al.: A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997, 272(29):17907-17911.
  • [10]Thornberry NA, Chapman KT, Nicholson DW: Determination of caspase specificities using a peptide combinatorial library. Methods Enzymol 2000, 322:100-110.
  • [11]Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ: Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA 2008, 105(35):12815-12819.
  • [12]Nakatsumi H, Yonehara S: Identification of functional regions defining different activity in caspase-3 and caspase-7 within cells. J Biol Chem 2010, 285(33):25418-25425.
  • [13]Demon D, Van Damme P, Vanden Berghe T, Deceuninck A, Van Durme J, Verspurten J, Helsens K, Impens F, Wejda M, Schymkowitz J, et al.: Proteome-wide substrate analysis indicates substrate exclusion as a mechanism to generate caspase-7 versus caspase-3 specificity. Mol Cell Proteomics 2009, 8(12):2700-2714.
  • [14]Shen J, Yin Y, Mai J, Xiong X, Pansuria M, Liu J, Maley E, Saqib NU, Wang H, Yang XF: Caspase-1 recognizes extended cleavage sites in its natural substrates. Atherosclerosis 2010, 210(2):422-429.
  • [15]Lohmuller T, Wenzler D, Hagemann S, Kiess W, Peters C, Dandekar T, Reinheckel T: Toward computer-based cleavage site prediction of cysteine endopeptidases. Biol Chem 2003, 384(6):899-909.
  • [16]Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF: Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999, 112:531-552.
  • [17]Backes C, Kuentzer J, Lenhof HP, Comtesse N, Meese E: GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences. Nucleic Acids Res 2005, 33(Web Server issue):W208-213.
  • [18]Garay-Malpartida HM, Occhiucci JM, Alves J, Belizario JE: CaSPredictor: a new computer-based tool for caspase substrate prediction. Bioinformatics 2005, 21 Suppl 1:i169-176.
  • [19]Wee LJ, Tan TW, Ranganathan S: CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics 2007, 23(23):3241-3243.
  • [20]Song J, Tan H, Shen H, Mahmood K, Boyd SE, Webb GI, Akutsu T, Whisstock JC: Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics 2010, 26(6):752-760.
  • [21]Piippo M, Lietzen N, Nevalainen OS, Salmi J, Nyman TA: Pripper: prediction of caspase cleavage sites from whole proteomes. BMC Bioinformatics 2010, 11:320.
  • [22]Li D, Jiang Z, Yu W, Du L: Predicting caspase substrate cleavage sites based on a hybrid SVM-PSSM method. Protein Pept Lett 2010, 17(12):1566-1571.
  • [23]The PubMed literature database [http://www.ncbi.nlm.nih.gov/pubmed/] webcite
  • [24]The Universal Protein Resource Knowledgebase (UniProtKB) [http://www.uniprot.org/] webcite
  • [25]Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters 2006, 27:861-874.
  • [26]The Caspase Substrate database Homepage [http://bioinf.gen.tcd.ie/casbah/] webcite
  • [27]MEROPS the Peptidase Database [http://merops.sanger.ac.uk/] webcite
  • [28]Chen J, Bardes EE, Aronow BJ, Jegga AG: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009, 37(Web Server issue):W305-311.
  • [29]Garnier J, Gibrat JF, Robson B: GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996, 266:540-553.
  • [30]Nakamoto K, Kuratsu J, Ozawa M: Beta-catenin cleavage in non-apoptotic cells with reduced cell adhesion activity. Int J Mol Med 2005, 15(6):973-979.
  • [31]D'Amelio M, Cavallucci V, Cecconi F: Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 2010, 17(7):1104-1114.
  • [32]Puga I, Rao A, Macian F: Targeted cleavage of signaling proteins by caspase 3 inhibits T cell receptor signaling in anergic T cells. Immunity 2008, 29(2):193-204.
  • [33]Park SY, Park SH, Lee IS, Kong JY: Establishment of a high-throughput screening system for caspase-3 inhibitors. Arch Pharm Res 2000, 23(3):246-251.
  • [34]Okun I, Malarchuk S, Dubrovskaya E, Khvat A, Tkachenko S, Kysil V, Ilyin A, Kravchenko D, Prossnitz ER, Sklar L, et al.: Screening for caspase-3 inhibitors: a new class of potent small-molecule inhibitors of caspase-3. J Biomol Screen 2006, 11(3):277-285.
  • [35]Lee AY, Park BC, Jang M, Cho S, Lee DH, Lee SC, Myung PK, Park SG: Identification of caspase-3 degradome by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 2004, 4(11):3429-3436.
  • [36]Tadokoro D, Takahama S, Shimizu K, Hayashi S, Endo Y, Sawasaki T: Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system. Cell Death and Dis 2010, 1:e89.
  • [37]Farzadfard F, Gharaei N, Pezeshk H, Marashi SA: Beta-sheet capping: signals that initiate and terminate beta-sheet formation. J Struct Biol 2008, 161(1):101-110.
  • [38]McGregor MJ, Islam SA, Sternberg MJ: Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol 1987, 198(2):295-310.
  • [39]Pokkuluri PR, Gu M, Cai X, Raffen R, Stevens FJ, Schiffer M: Factors contributing to decreased protein stability when aspartic acid residues are in beta-sheet regions. Protein Sci 2002, 11(7):1687-1694.
  • [40]Tozser J, Bagossi P, Zahuczky G, Specht SI, Majerova E, Copeland TD: Effect of caspase cleavage-site phosphorylation on proteolysis. Biochem J 2003, 372(Pt 1):137-143.
  • [41]Martin DD, Beauchamp E, Berthiaume LG: Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011, 93(1):18-31.
  • [42]Saraste A, Pulkki K: Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000, 45(3):528-537.
  • [43]Fabbri F, Carloni S, Brigliadori G, Zoli W, Lapalombella R, Marini M: Sequential events of apoptosis involving docetaxel, a microtubule-interfering agent: a cytometric study. BMC Cell Biol 2006, 7:6.
  • [44]Oomman S, Strahlendorf H, Dertien J, Strahlendorf J: Bergmann glia utilize active caspase-3 for differentiation. Brain Res 2006, 1078(1):19-34.
  • [45]Noyan-Ashraf MH, Brandizzi F, Juurlink BH: Constitutive nuclear localization of activated caspase 3 in subpopulations of the astroglial family of cells. Glia 2005, 49(4):588-593.
  • [46]Kamada S, Kikkawa U, Tsujimoto Y, Hunter T: Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005, 280(2):857-860.
  • [47]Feng Y, Hu J, Xie D, Qin J, Zhong Y, Li X, Xiao W, Wu J, Tao D, Zhang M, et al.: Subcellular localization of caspase-3 activation correlates with changes in apoptotic morphology in MOLT-4 leukemia cells exposed to X-ray irradiation. Int J Oncol 2005, 27(3):699-704.
  文献评价指标  
  下载次数:82次 浏览次数:16次