期刊论文详细信息
Biotechnology for Biofuels
An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies
Sudhir Kumar Sharma1  David R. Nelson3  Rasha Abdrabu3  Basel Khraiwesh3  Kenan Jijakli4  Marc Arnoux3  Matthew J. O’Connor2  Tayebeh Bahmani4  Hong Cai4  Sachin Khapli1  Ramesh Jagannathan1  Kourosh Salehi-Ashtiani3 
[1] Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
[2] Core Technology Platform, New York University Abu Dhabi, Abu Dhabi, UAE
[3] Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
[4] Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
关键词: Lipidomics;    Confocal Raman microscopy;    FACS;    Single cell analysis;    Biofuel;    Algae;   
Others  :  1230587
DOI  :  10.1186/s13068-015-0349-1
 received in 2015-07-22, accepted in 2015-09-25,  发布年份 2015
PDF
【 摘 要 】

Background

Oils and bioproducts extracted from cultivated algae can be used as sustainable feedstock for fuels, nutritional supplements, and other bio-based products. Discovery and isolation of new algal species and their subsequent optimization are needed to achieve economical feasibility for industrial applications. Here we describe and validate a workflow for in situ analysis of algal lipids through confocal Raman microscopy. We demonstrate its effectiveness to characterize lipid content of algal strains isolated from the environment as well as algal cells screened for increased lipid accumulation through UV mutagenesis combined with Fluorescence Activated Cell Sorting (FACS).

Results

To establish and validate our workflow, we refined an existing Raman platform to obtain better discrimination in chain length and saturation of lipids through ratiometric analyses of mixed fatty acid lipid standards. Raman experiments were performed using two different excitation lasers (λ = 532 and 785 nm), with close agreement observed between values obtained using each laser. Liquid chromatography coupled with mass spectrometry (LC–MS) experiments validated the obtained Raman spectroscopic results. To demonstrate the utility and effectiveness of the improved Raman platform, we carried out bioprospecting for algal species from soil and marine environments in both temperate and subtropical geographies to obtain algal isolates from varied environments. Further, we carried out two rounds of mutagenesis screens on the green algal model species, Chlamydomonas reinhardtii, to obtain cells with increased lipid content. Analyses on both environmental isolates and screened cells were conducted which determined their respective lipids. Different saturation states among the isolates as well as the screened C. reinhardtii strains were observed. The latter indicated the presence of cell-to cell variations among cells grown under identical condition. In contrast, non-mutagenized C. reinhardtii cells showed no significant heterogeneity in lipid content.

Conclusions

We demonstrate the utility of confocal Raman microscopy for lipid analysis on novel aquatic and soil microalgal isolates and for characterization of lipid-expressing cells obtained in a mutagenesis screen. Raman microscopy enables quantitative determination of the unsaturation level and chain lengths of microalgal lipids, which are key parameters in selection and engineering of microalgae for optimal production of biofuels.

【 授权许可】

   
2015 The Author(s)

【 预 览 】
附件列表
Files Size Format View
20151107011553136.pdf 2269KB PDF download
Fig.5. 74KB Image download
Fig.4. 138KB Image download
Fig.3. 61KB Image download
Fig.2. 80KB Image download
Fig.1. 106KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]Nelson DR, Mengistu S, Ranum P, Celio G, Mashek M, Mashek D, Lefebvre PA: New lipid-producing, cold-tolerant yellow-green alga isolated from the rocky mountains of Colorado. Biotechnol Prog. 2013, 29:853-861.
  • [2]Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q: A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 2013, 6:143. BioMed Central Full Text
  • [3]Mcginnis KM, Dempster TA, Sommerfeld MR: Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 1997, 9:19-24.
  • [4]Spolaore P, Joannis-Cassan C, Duran E, Isambert A: Commercial applications of microalgae. J Biosci Bioeng 2006, 101:87-96.
  • [5]Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C: Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 2012, 162:3-12.
  • [6]Samek O, Zemánek P, Jonáš A, Telle HH: Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett. 2011, 8:701-709.
  • [7]Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S: In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA 2011, 108:3809-3814.
  • [8]Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA: A comprehensive GC-MS Sub-microscale assay for fatty acids and its applications. JAOCS J Am Oil Chem Soc. 2011, 88:1329-1338.
  • [9]MacDougall KM, McNichol J, McGinn PJ, O’Leary SJB, Melanson JE: Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 2011, 401:2609-2616.
  • [10]Nuzzo G, Gallo C, D’Ippolito G, Cutignano A, Sardo A, Fontana A: Composition and quantitation of microalgal lipids by ERETIC 1H NMR method. Mar Drugs 2013, 11:3742-3753.
  • [11]Dean AP, Sigee DC, Estrada B, Pittman JK: Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 2010, 101:4499-4507.
  • [12]Petry R, Schmitt M, Popp J: Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 2003, 4:14-30.
  • [13]Li M, Yang L, Bai Y, Liu H: Analytical methods in lipidomics and their applications. Anal Chem 2014, 86:161-175.
  • [14]Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS: Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 2002, 14:R597-R624.
  • [15]Cotton TM, Kim J, Chumanov GD: Application of surface-enhanced Raman spectroscopy to biological systems. J Raman Spectrosc 1991, 22:729-742.
  • [16]Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS: Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322:1857-1861.
  • [17]Le TT, Yue S, Cheng J-X: Shedding new light on lipid biology with coherent anti-stokes Raman scattering microscopy. J Lipid Res 2010, 51:3091-3102.
  • [18]Spiro TG: Resonance Raman spectroscopy. New structure probe for biological chromophores. Acc Chem Res 1974, 7:339-344.
  • [19]Asher SA: UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 2. Anal Chem 1993, 65:201A-210A.
  • [20]Puppels GJ, De Mul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM: Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 1990, 347:301-303.
  • [21]Baena JR, Lendl B: Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 2004, 8:534-539.
  • [22]Carden A, Morris MD: Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 2000, 5:259-268.
  • [23]Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP: Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 2014, 7:70. BioMed Central Full Text
  • [24]Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, Han D, Hu Q, Huang WE, Xu J: Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 2014, 7:58. BioMed Central Full Text
  • [25]Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM: Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 2010, 105:889-898.
  • [26]Heraud P, Beardall J, McNaughton D, Wood BR: In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 2007, 275:24-30.
  • [27]Kaczor A, Turnau K, Baranska M: In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 2011, 136:1109-1112.
  • [28]Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T, Hamaguchi H-O, Tanaka T: In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy. Anal Chem 2014, 86:8224-8230.
  • [29]Pořízka P, Prochazková P, Prochazka D, Sládková L, Novotný J, Petrilak M, Brada M, Samek O, Pilát Z, Zemánek P, Adam V, Kizek R, Novotný K, Kaiser J: Algal biomass analysis by laser-based analytical techniques—a review. Sensors 2014, 14:17725-17752.
  • [30]Wei X, Jie D, Cuello JJ, Johnson DJ, Qiu Z, He Y: Microalgal detection by Raman microspectroscopy. TrAC Trends Anal Chem 2014, 53:33-40.
  • [31]Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J: TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 2012, 23:352-363.
  • [32]Parker SF, Tavender SM, Dixon NM, Herman H, Williams KPJ, Maddams WF: Raman spectrum of β-carotene using Laser lines from green (514.5 nm) to near-infrared (1064 nm): implications for the characterization of conjugated polyenes. Appl Spectrosc 1999, 1999(53):86-91.
  • [33]Castiglioni C, Del Zoppo M, Zerbi G: Vibrational Raman spectroscopy of polyconjugated organic oligomers and polymers. J Raman Spectrosc 1993, 24:485-494.
  • [34]Kobayashi N, Noel E, Barnes A, Rosenberg J, DiRusso C, Black P, Oyler GA: Rapid detection and quantification of triacylglycerol by HPLC-ELSD in Chlamydomonas reinhardtii and Chlorella strains. Lipids 2013, 48:1035-1049.
  • [35]Kim S, Kim H, Ko D, Yamaoka Y, Otsuru M, Kawai-Yamada M, Ishikawa T, Oh H-M, Nishida I, Li-Beisson Y, Lee Y: Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One 2013, 8:e81978.
  • [36]Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-beisson Y, Peltier G: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 2011, 11:7. BioMed Central Full Text
  • [37]Msanne J, Xu D, Reddy A, Casas-mollano JA, Awada T, Cahoon EB, Cerutti H: Metabolic and gene expression changes triggered by nitrogen deprivation in the Msanne J, Xu D, Reddy A, Casas-mollano JA, Awada T, Cahoon EB, Cerutti H. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophical. Phytochemistry 2012, 2012(75):50-59.
  • [38]Wu Q, Nelson WH, Zhang J, Brown CW, Seelenbinder JA: Differentiation of algae clones on the basis of resonance Raman spectra excited by visible light. Anal Chem 1998, 70:1782-1787.
  • [39]Wood BR, Heraud P, Stojkovic S, Morrison D, Beardall J, McNaughton D: A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells. Anal Chem 2005, 77:4955-4961.
  • [40]Heraud P, Wood BR, Beardall J, Mcnaughton D: Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 2006, 20:193-197.
  • [41]Cooper MS, Hardin WR, Petersen TW, Cattolico RA: Visualizing “green oil” in live algal cells. J Biosci Bioeng 2010, 109:198-201.
  • [42]Brennan L, Blanco Fernández A, Mostaert AS, Owende P: Enhancement of BODIPY 505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Methods 2012, 90:137-143.
  • [43]Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, Nikolau BJ, Spalding MH, Halverson LJ: High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J. 2014, 12:872-882.
  • [44]Terashima M, Freeman ES, Jinkerson RE, Jonikas MC: A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J 2015, 81:147-159.
  • [45]Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K: Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 2013, 31:2-16.
  • [46]Plaza M, Santoyo S, Jaime L, Reina GGB, Herrero M, Senorans F, Ibanez E: Screening for bioactive compounds from algae. J Pharm Biomed Anal. 2010, 51:450-455.
  • [47]Huey-Lang Y, Chung-Kuang L, Shu-Fen C, Young-Mao C, Yi-Min C: Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexanoic acid (DHA) production. Mar Biotech 2010, 12:173-185.
  • [48]Lang I, Hodac L, Friedl T, Feussner I: Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Bio 2011, 11:124. BioMed Central Full Text
  • [49]He M, Li L, Liu J: Isolation of wild microalgae from natural water bodies for high hydrogen producing strains. Int J Hyd Energy 2012, 51:4046-4056.
  • [50]Zayadan BK, Purton S, Sadvakasova AK, Userbaeva AA, Bolatkhan K: Isolation, mutagenesis, and optimization of cultivation conditions of microalgal strains for biodiesel production. Russ J Plant Physiol 2014, 61:124-130.
  • [51]Tillich UM, Lehmann S, Schulze K, Dühring U, Frohme M: The optimal mutagen dosage to induce point-mutations in synechocystis sp. pcc6803 and its application to promote temperature tolerance. PLoS One 2012, 7:e49467.
  • [52]Sager R, Granick S: Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci 1956, 56:831-838.
  • [53]Luck D, Piperno G, Ramanis Z, Huang B: Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. Proc Natl Acad Sci. 1977, 74:3456-3460.
  • [54]Neupert J, Karcher D, Bock R: Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 2009, 57:1140-1150.
  文献评价指标  
  下载次数:27次 浏览次数:10次