期刊论文详细信息
Annals of Occupational and Environmental Medicine
Causes and consequences of fine-scale population structure in a critically endangered freshwater seal
Mia Valtonen3  Jukka U Palo4  Jouni Aspi2  Minna Ruokonen2  Mervi Kunnasranta3  Tommi Nyman1 
[1] Institute for Systematic Botany, University of Zurich, Zurich, Switzerland
[2] Department of Biology, University of Oulu, Oulu, Finland
[3] Department of Biology, University of Eastern Finland, Joensuu, Finland
[4] Laboratory of Forensic Biology, Hjelt Institute, University of Helsinki, Helsinki, Finland
关键词: Small population;    Landscape genetics;    Genetic erosion;    Gene flow;    Effective population size;    Cryptic population structure;   
Others  :  863069
DOI  :  10.1186/1472-6785-14-22
 received in 2014-01-28, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

Small, genetically uniform populations may face an elevated risk of extinction due to reduced environmental adaptability and individual fitness. Fragmentation can intensify these genetic adversities and, therefore, dispersal and gene flow among subpopulations within an isolated population is often essential for maintaining its viability. Using microsatellite and mtDNA data, we examined genetic diversity, spatial differentiation, interregional gene flow, and effective population sizes in the critically endangered Saimaa ringed seal (Phoca hispida saimensis), which is endemic to the large but highly fragmented Lake Saimaa in southeastern Finland.

Results

Microsatellite diversity within the subspecies (HE = 0.36) ranks among the lowest thus far recorded within the order Pinnipedia, with signs of ongoing loss of individual heterozygosity, reflecting very low effective subpopulation sizes. Bayesian assignment analyses of the microsatellite data revealed clear genetic differentiation among the main breeding areas, but interregional structuring was substantially weaker in biparentally inherited microsatellites (FST = 0.107) than in maternally inherited mtDNA (FST = 0.444), indicating a sevenfold difference in the gene flow mediated by males versus females.

Conclusions

Genetic structuring in the population appears to arise from the joint effects of multiple factors, including small effective subpopulation sizes, a fragmented lacustrine habitat, and behavioural dispersal limitation. The fine-scale differentiation found in the landlocked Saimaa ringed seal is especially surprising when contrasted with marine ringed seals, which often exhibit near-panmixia among subpopulations separated by hundreds or even thousands of kilometres. Our results demonstrate that population structures of endangered animals cannot be predicted based on data on even closely related species or subspecies.

【 授权许可】

   
2014 Valtonen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725024603501.pdf 3200KB PDF download
95KB Image download
21KB Image download
82KB Image download
39KB Image download
139KB Image download
【 图 表 】

【 参考文献 】
  • [1]Reed DH: Extinction risk in fragmented habitats. Animal Conserv 2004, 7:181-191.
  • [2]Zhu L, Zhang S, Gu X, Wei F: Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China. Mol Ecol 2011, 20:1122-1132.
  • [3]Gottelli D, Sillero-Zubiri C, Marino J, Funk SM, Wang J: Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Animal Conserv 2012, 16:234-247.
  • [4]Miller BF, DeYoung RW, Campbell TA, Laseter BR, Ford WM, Miller KV: Fine-scale genetic and social structuring in a central Appalachian white-tailed deer herd. J Mammal 2010, 91:681-689.
  • [5]Wolf JBW, Trillmich F: Beyond habitat requirements: individual fine-scale site fidelity in a colony of the Galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia 2007, 152:553-567.
  • [6]Mirimin L, Miller R, Dillane E, Berrow SD, Ingram S, Cross TF, Rogan E: Fine-scale population genetic structuring of bottlenose dolphins in Irish coastal waters. Animal Conserv 2011, 14:342-353.
  • [7]Surridge AK, Ibrahim KM, Bell DJ, Webb NJ, Rico C, Hewitt GM: Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol Ecol 1999, 8:299-307.
  • [8]Lowther AD, Harcourt RG, Goldsworthy SD, Stow A: Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim Behav 2012, 83:691-701.
  • [9]Mills L, Schwartz MK, Tallmon DA, Lair K: Measuring and interpreting connectivity for mammals in coniferous forests. In Mammal Community Dynamics, Management and Conservation in the Coniferous Forests of Western North America. Edited by Zabel CJ, Anthony RG. Cambridge: Cambridge University Press; 2003:587-613.
  • [10]Lowe WH, Allendorf FW: What can genetics tell us about population connectivity? Mol Ecol 2010, 19:3038-3051.
  • [11]Andreasen AM, Stewart KM, Longland WS, Beckmann JP, Forister ML: Identification of source-sink dynamics in mountain lions of the Great Basin. Mol Ecol 2012, 21:5689-5701.
  • [12]Ukkonen P: The early history of seals in the northern Baltic. Ann Zool Fenn 2002, 39:187-207.
  • [13]Kokko H, Helle E, Lindström J, Ranta E, Sipilä T, Courchamp F: Backcasting population sizes of ringed and grey seals in the Baltic and Lake Saimaa during the 20th century. Ann Zool Fenn 1999, 36:65-73.
  • [14]Sipilä T: Conservation biology of Saimaa ringed seal (Phoca hispida saimensis) with reference to other European seal populations. University of Helsinki: PhD Thesis; 2003.
  • [15]Metsähallitus, Natural Heritage Services: Saimaannorppa (Saimaa ringed seal, in Finnish). [ http://www.metsa.fi/sivustot/metsa/fi/Luonnonsuojelu/Lajitjaluontotyypit/Uhanalaisetelaimet/Saimaannorppa/Sivut/Saimaannorppa.aspx webcite]
  • [16]Palo JU, Hyvärinen H, Helle E, Mäkinen HS, Väinölä R: Postglacial loss of microsatellite variation in the landlocked Lake Saimaa ringed seal. Conserv Genet 2003, 4:117-128.
  • [17]Valtonen M, Palo JU, Ruokonen M, Kunnasranta M, Nyman T: Spatial and temporal variation in genetic diversity of an endangered freshwater seal. Conserv Genet 2012, 13:1231-1245.
  • [18]Kuusisto E: Basin and balances. In Saimaa, a Living Lake. Edited by Kuusisto E. Helsinki: Tammi; 1999.
  • [19]Niemi M, Auttila M, Viljanen M, Kunnasranta M: Movement data and their application for assessing the current distribution and conservation needs of the endangered Saimaa ringed seal. Endangered Species Res 2012, 19:99-108.
  • [20]Niemi M, Auttila M, Valtonen A, Viljanen M, Kunnasranta M: Haulout patterns of Saimaa ringed seals and their response to boat traffic during the moulting season. Endangered Species Res 2013, 22:115-124.
  • [21]Niemi M, Auttila M, Viljanen M, Kunnasranta M: Home range, survival, and dispersal of endangered Saimaa ringed seal pups: implications for conservation. Mar Mamm Sci 2013, 29:1-13.
  • [22]Valtonen M, Palo JU, Aspi J, Ruokonen M, Kunnasranta M, Nyman T: Data from: Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. Dryad Digit Repository 2014. http://dx.doi.org/10.5061/dryad.5j754 webcite
  • [23]Gemmell NJ, Allen PJ, Goodman SJ, Reed JZ: Interspecific microsatellite markers for the study of pinniped populations. Mol Ecol 1997, 6:661-666.
  • [24]Pastor T, Garza JC, Allen P, Amos W, Aguilar A: Low genetic variability in the highly endangered Mediterranean monk seal. J Hered 2004, 95:291-300.
  • [25]Allen PJ, Amos W, Pomeroy PP, Twiss SD: Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol Ecol 1995, 4:653-662.
  • [26]Twiss SD, Poland VF, Graves JA, Pomeroy PP: Finding fathers: spatio-temporal analysis of paternity assignment in grey seals (Halichoerus grypus). Mol Ecol 2006, 15:1939-1953.
  • [27]Davis C, Gelatt T, Siniff D, Strobeck C: Dinucleotide microsatellite markers from the Antarctic seals and their use in other pinnipeds. Mol Ecol Notes 2002, 2:203-208.
  • [28]Coltman D, Bowen W, Wright J: PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol 1996, 5:161-163.
  • [29]Goodman SJ: Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Anim Genet 1997, 28:308-322.
  • [30]Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
  • [31]Chapuis M-P, Estoup A: Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007, 24:621-631.
  • [32]Smith TG: Population dynamics of the ringed seal in the Canadian Eastern Arctic. Bull Fisher Res Board Canada 1973, 181:1-55.
  • [33]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
  • [34]Rousset F: GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 2008, 8:103-106.
  • [35]Kalinowski ST: Counting alleles with rarefaction: private alleles and hierarchial sampling designs. Conserv Genet 2004, 5:539-543.
  • [36]Amos W, Worthington Wilmer J, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T: The influence of parental relatedness on reproductive success. Proc Biol Sci 2001, 268:2021-2027.
  • [37]Waples RS, Do C: LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 2008, 8:753-756.
  • [38]Jorde PE, Ryman N: Unbiased estimator for genetic drift and effective population size. Genetics 2007, 177:927-935.
  • [39]Waples RS: A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 1989, 121:379-391.
  • [40]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1358-1370.
  • [41]Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
  • [42]Jost L: GST and its relatives do not measure differentiation. Mol Ecol 2008, 17:4015-4026.
  • [43]Heller R, Siegismund HR: Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 2009, 18:2080-2083.
  • [44]Meirmans PG, Hedrick PW: Assessing population structure: FST and related measures. Mol Ecol Resour 2011, 11:5-18.
  • [45]Peakall R, Smouse PE: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6:288-295.
  • [46]Peakall R, Smouse P: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 2012, 1:6-8.
  • [47]Pennings PS, Achenbach A, Foitzik S: Similar evolutionary potentials in an obligate ant parasite and its two host species. J Evol Biol 2011, 24:871-886.
  • [48]Pennings PS, Achenbach A, Foitzik S: Data from: Similar evolutionary potentials in an obligate ant parasite and its two host species. Dryad Digital Repository 2011. doi:10.5061/dryad.8134.2
  • [49]Charif D, Lobry J: SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Edited by Bastolla U, Porto M, Roman HE, Vendruscolo M. New York: Springer Verlag; 2007:207-232.
  • [50]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [51]R Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. [ http://www.R-project.org/ webcite]
  • [52]Belkhir K, Borsa P, Chikhi L, Raufuste N, Bonhomme F: GENETIX 4.0.5.2., software under WindowsTM for the genetics of the populations. Montpellier, France: Laboratory genome, populations, interactions, CNRS UMP 5000, University of Montpellier II; 2004.
  • [53]McCune B, Mefford MJ: PC-ORD, multivariate analysis of ecological data, Version 5.33. Gleneden Beach, Oregon, USA: MjM Software; 2006.
  • [54]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [55]Hubisz MJ, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009, 9:1322-1332.
  • [56]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [57]Earl DA, VonHoldt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 2011, 4:359-361.
  • [58]Chen C, Durand E, Forbes F, François O: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 2007, 7:747-756.
  • [59]Durand E, Jay F, Gaggiotti OE, François O: Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 2009, 26:1963-1973.
  • [60]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [61]Rosenberg NA: Distruct: a program for the graphical display of population structure. Mol Ecol Notes 2003, 4:137-138.
  • [62]Hardy OJ, Vekemans X: SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2002, 2:618-620.
  • [63]Hardy OJ: Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 2003, 12:1577-1588.
  • [64]Loiselle BA, Sork VL, Nason J, Graham C: Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 1995, 82:1420-1425.
  • [65]Vekemans X, Hardy OJ: New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 2004, 13:921-935.
  • [66]Hardy OJ, Vekemans X: SPAGeDi 1.3: a Program for Spatial Pattern Analysis of Genetic Diversity. User’s Manual. 2009.
  • [67]Wilson GA, Rannala B: Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003, 163:1177-1191.
  • [68]González-Suárez M, Flatz R, Aurioles-Gamboa D, Hedrick PW, Gerber LR: Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Mol Ecol 2009, 18:1088-1099.
  • [69]Ennos RA: Estimating the relative rates of pollen and seed migration among plant populations. Heredity 1994, 72:250-259.
  • [70]Slatkin M, Excoffier L: Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity 1996, 76:377-383.
  • [71]Kopatz A, Eiken H, Hagen S, Ruokonen M, Esparza-Salas R, Schregel J, Kojola I, Smith M, Wartiainen I, Aspholm P, Wikan S, Rykov A, Makarova O, Polikarpova N, Tirronen K, Danilov P, Aspi J: Connectivity and population subdivision at the fringe of a large brown bear (Ursus arctos) population in North Western Europe. Conserv Genet 2012, 13:681-692.
  • [72]Palo JU, Mäkinen HS, Helle E, Stenman O, Väinölä R: Microsatellite variation in ringed seals (Phoca hispida): genetic structure and history of the Baltic Sea population. Heredity 2001, 86:609-617.
  • [73]Davis CS, Stirling I, Strobeck C, Coltman DW: Population structure of ice-breeding seals. Mol Ecol 2008, 17:3078-3094.
  • [74]Martinez-Bakker ME, Sell SK, Swanson BJ, Kelly BP, Tallmon DA: Combined genetic and telemetry data reveal high rates of gene flow, migration, and long-distance dispersal potential in Arctic ringed seals (Pusa hispida). PLoS One 2013, 8:e77125.
  • [75]Schultz JK, Baker JD, Toonen RJ, Bowen BW: Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi). J Hered 2009, 100:25-33.
  • [76]Han J-B, Sun F-Y, Gao X-G, He C-B, Wang P-L, Ma Z-Q, Wang Z-H: Low microsatellite variation in spotted seal (Phoca largha) shows a decrease in population size in the Liadong Gulf colony. Ann Zool Fenn 2010, 47:15-27.
  • [77]Sanvito S, Dueñes Meza A, Schramm Y, Cruz Hernández P, Esquer Garrigos Y, Galimberti F: Isolation and cross-species amplification of novel microsatellite loci in a charismatic marine mammal species, the northern elephant seal (Mirounga angustirostris). Conserv Genet Res 2012, 5:93-96.
  • [78]Garner A, Rachlow JL, Hicks JF: Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 2005, 19:1215-1221.
  • [79]Casas-Marce M, Soriano L, López-Bao JV, Godoy JA: Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 2013, 22:5503-5515.
  • [80]Ellegren H, Primmer CR, Sheldon BC: Microsatellite "evolution": directionality or bias? Nat Genet 1995, 11:360-361.
  • [81]Aspi J, Roininen E, Ruokonen M, Kojola I, Vilà C: Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 2006, 15:1561-1576.
  • [82]Ortego J, Yannic G, Shafer ABA, Mainguy J, Festa-Bianchet M, Coltman DW, Côté SD: Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 2011, 20:1601-1611.
  • [83]England PR, Luikart G, Waples RS: Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conserv Genet 2010, 11:2425-2430.
  • [84]Palstra FP, Ruzzante DE: Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 2008, 17:3428-3447.
  • [85]Mondol S, Bruford MW, Ramakrishnan U: Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc Biol Sci 2013, 280:20130496. doi: 10.1098/rspb.2013.0496
  • [86]Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C: Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Climate Change 2012, 2:285-288.
  • [87]Ansmann IC, Parra GJ, Lanyon JM, Seddon JM: Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia. Mol Ecol 2012, 21:4472-4485.
  • [88]DiLeo MF, Rouse JD, Dávila JA, Lougheed SC: The influence of landscape on gene flow in the eastern massasauga rattlesnake (Sistrurus c. catenatus): insight from computer simulations. Mol Ecol 2013, 22:4483-4498.
  • [89]Graves JA, Helyar A, Biuw M, Jüssi M, Jüssi I, Karlsson O: Microsatellite and mtDNA analysis of the population structure of grey seals (Halichoerus grypus) from three breeding areas in the Baltic Sea. Conserv Genet 2009, 10:59-68.
  • [90]Andersen LW, Lydersen C, Frie AK, Rosing-Asvid A, Hauksson E, Kovacs K: A population on the edge: genetic diversity and population structure of the world’s northernmost harbour seals (Phoca vitulina). Biol J Linn Soc 2011, 102:420-439.
  • [91]Schultz JK, Baker JD, Toonen RJ, Harting AL, Bowen BW: Range-wide genetic connectivity of the Hawaiian monk seal and implications for translocation. Conserv Biol 2011, 25:124-132.
  • [92]Dickerson BR, Ream RR, Vignieri SN, Bentzen P: Population structure as revealed by mtDNA and microsatellites in northern fur seals, Callorhinus ursinus, throughout their range. PLoS One 2010, 5:e10671.
  • [93]Kokko H, Lindström J, Ranta E, Sipilä T, Koskela J: Estimating the demographic effective population size of the Saimaa ringed seal (Phoca hispida saimensis Nordq.). Animal Conserv 1998, 1:47-54.
  • [94]Hoelzel AR, Campagna C, Arnbom T: Genetic and morphometric differentiation between island and mainland southern elephant seal populations. Proc Biol Sci 2001, 268:325-332.
  • [95]Hoffman JI, Matson CW, Amos W, Loughlin TR, Bickham JW: Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller’s sea lion (Eumetopias jubatus). Mol Ecol 2006, 15:2821-2832.
  • [96]Greenwood PJ: Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 1980, 28:1140-1162.
  • [97]Herreman JK, Blundell GM, McDonald DB, Ben-David M: Asymmetrical male-mediated gene flow between harbor seal (Phoca vitulina) populations in Alaska. Can J Zool 2009, 87:498-507.
  • [98]Frankham R: Stress and adaptation in conservation genetics. J Evol Biol 2005, 18:750-755.
  • [99]Pauls SU, Nowak C, Bálint M, Pfenninger M: The impact of global climate change on genetic diversity within populations and species. Mol Ecol 2013, 22:925-946.
  • [100]Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Nygård T, Volke V, Vilà C, Ellegren H: Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2006, 2:316-319.
  • [101]Zhang B, Li M, Zhang Z, Goossens B, Zhu L, Zhang S, Hu J, Bruford MW, Wei F: Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"? Mol Biol Evol 2007, 24:1801-1810.
  • [102]Kekkonen J, Wikström M, Brommer JE: Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS One 2012, 7:e43482.
  • [103]Apps CD, McLellan BN: Factors influencing the dispersion and fragmentation of endangered mountain caribou populations. Biol Conserv 2006, 130:84-97.
  • [104]Proctor MF, Paetkau D, Mclellan BN, Stenhouse GB, Kendall KC, Mace RD, Kasworm WF, Servheen C, Lausen CL, Gibeau ML, Wakkinen WL, Haroldson MA, Mowat G, Apps CD, Ciarniello LM, Barclay RMR, Boyce MS, Schwartz CC, Strobeck C: Population fragmentation and inter-ecosystem movements of grizzly bears in western Canada and the northern United States. Wildlife Monogr 2012, 180:1-46.
  • [105]Slatkin M: Gene flow and the geographic structure of natural populations. Science 1987, 236:787-792.
  • [106]Cushman SA, Shirk A, Landguth EL: Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 2012, 27:369-380.
  • [107]Sacks BN, Mitchell BR, Williams CL, Ernest HB: Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol 2005, 14:1241-1249.
  文献评价指标  
  下载次数:20次 浏览次数:5次