期刊论文详细信息
BMC Cancer
Anti-proliferative but not anti-angiogenic tyrosine kinase inhibitors enrich for cancer stem cells in soft tissue sarcoma
Robert J Canter6  Erik Ames5  Stephanie Mac5  Steven K Grossenbacher5  Mingyi Chen7  Chin-Shang Li4  Dariusz Borys7  Rachel C Smith5  Joe Tellez5  Thomas J Sayers1  Arta M Monjazeb2  William J Murphy3 
[1] Cancer and Inflammation Program, Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, Maryland 21702, USA
[2] Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA 95817, USA
[3] Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA
[4] Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Sacramento, CA 95817, USA
[5] Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA
[6] Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, 4501 X Street, Sacramento, CA 95817, USA
[7] Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
关键词: ALDH;    Regorafenib;    Pazopanib;    Sorafenib;    Tyrosine kinase inhibitors;    Cancer stem cells;    Soft tissue sarcoma;   
Others  :  1120984
DOI  :  10.1186/1471-2407-14-756
 received in 2014-07-17, accepted in 2014-10-02,  发布年份 2014
PDF
【 摘 要 】

Background

Increasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies. Few studies have examined the response of CSCs to targeted therapies, such as tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs would have differential effects on CSC populations depending on their mechanism of action (anti-proliferative vs. anti-angiogenic).

Methods

We exposed human sarcoma cell lines to sorafenib, regorafenib, and pazopanib and assessed cell viability and expression of CSC markers (ALDH, CD24, CD44, and CD133). We evaluated survival and CSC phenotype in mice harboring sarcoma metastases after TKI therapy. We exposed dissociated primary sarcoma tumors to sorafenib, regorafenib, and pazopanib, and we used tissue microarray (TMA) and primary sarcoma samples to evaluate the frequency and intensity of CSC markers after neoadjuvant therapy with sorafenib and pazopanib. Parametric and non-parametric statistical analyses were performed as appropriate.

Results

After functionally validating the CSC phenotype of ALDHbright sarcoma cells, we observed that sorafenib and regorafenib were cytotoxic to sarcoma cell lines (P < 0.05), with a corresponding 1.4 – 2.8 fold increase in ALDHbright cells from baseline (P < 0.05). In contrast, we observed negligible effects on viability and CSC sub-populations with pazopanib. At low doses, there was progressive CSC enrichment in vitro after longer term exposure to sorafenib although the anti-proliferative effects were attenuated. In vivo, sorafenib improved median survival by 11 days (P < 0.05), but enriched ALDHbright cells 2.5 – 2.8 fold (P < 0.05). Analysis of primary human sarcoma samples revealed direct cytotoxicity following exposure to sorafenib and regorafenib with a corresponding increase in ALDHbright cells (P < 0.05). Again, negligible effects from pazopanib were observed. TMA analysis of archived specimens from sarcoma patients treated with sorafenib demonstrated significant enrichment for ALDHbright cells in the post-treatment resection specimen (P < 0.05), whereas clinical specimens obtained longitudinally from a patient treated with pazopanib showed no enrichment for ALDHbright cells (P > 0.05).

Conclusions

Anti-proliferative TKIs appear to enrich for sarcoma CSCs while anti-angiogenic TKIs do not. The rational selection of targeted therapies for sarcoma patients may benefit from an awareness of the differential impact of TKIs on CSC populations.

【 授权许可】

   
2014 Canter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211012425465.pdf 2312KB PDF download
Figure 5. 82KB Image download
Figure 4. 78KB Image download
Figure 3. 80KB Image download
Figure 2. 68KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Visvader JE, Lindeman GJ: Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012, 10(6):717-728.
  • [2]Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W: Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010, 7(3):279-282.
  • [3]Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF: A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012, 488(7412):522-526.
  • [4]Jiang X, Gwye Y, Russell D, Cao C, Douglas D, Hung L, Kovar H, Triche TJ, Lawlor ER: CD133 expression in chemo-resistant Ewing sarcoma cells. BMC Cancer 2010, 10:116.
  • [5]Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008, 100(9):672-679.
  • [6]Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D: ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 2013, 73(24):7290-7300.
  • [7]van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N, Hamdy FC, Eaton CL, Thalmann GN, Cecchini MG, Pelger RC, van der Pluijm G: High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 2010, 70(12):5163-5173.
  • [8]Wang L, Park P, Zhang H, La Marca F, Lin CY: Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 2011, 128(2):294-303.
  • [9]Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H: Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 2012, 337(6095):730-735.
  • [10]Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C: Defining the mode of tumour growth by clonal analysis. Nature 2012, 488(7412):527-530.
  • [11]Dela Cruz FS: Cancer stem cells in pediatric sarcomas. Front Oncol 2013, 3:168.
  • [12]Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wöhrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C: Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 2012, 12(11):767-775.
  • [13]Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS: Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010, 16(1):45-55.
  • [14]Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Bützow R, Coukos G, Zhang L: Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010, 5(4):e10277.
  • [15]Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1(5):555-567.
  • [16]Kitamura H, Torigoe T, Hirohashi Y, Asanuma H, Inoue R, Nishida S, Tanaka T, Fukuta F, Masumori N, Sato N, Tsukamoto T: Prognostic impact of the expression of ALDH1 and SOX2 in urothelial cancer of the upper urinary tract. Mod Pathol 2013, 26(1):117-124.
  • [17]Le Magnen C, Bubendorf L, Rentsch CA, Mengus C, Gsponer J, Zellweger T, Rieken M, Thalmann GN, Cecchini MG, Germann M, Bachmann A, Wyler S, Heberer M, Spagnoli GC: Characterization and clinical relevance of ALDHbright populations in prostate cancer. Clin Cancer Res 2013, 19(19):5361-5371.
  • [18]Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F: ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 2010, 90(2):234-244.
  • [19]Awad O, Yustein JT, Shah P, Gul N, Katuri V, O’Neill A, Kong Y, Brown ML, Toretsky JA, Loeb DM: High ALDH activity identifies chemotherapy-resistant Ewing’s sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One 2010, 5(11):e13943.
  • [20]Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA: BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004, 64(19):7099-7109.
  • [21]Hasskarl J: Sorafenib: targeting multiple tyrosine kinases in cancer. Recent Results Cancer Res 2014, 201:145-164.
  • [22]Maki RG, D’Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, Livingston MB, Cooney MM, Hensley ML, Mita MM, Takimoto CH, Kraft AS, Elias AD, Brockstein B, Blachère NE, Edgar MA, Schwartz LH, Qin LX, Antonescu CR, Schwartz GK: Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. Clin Cancer Res 2009, 27(19):3133-3140.
  • [23]von Mehren M, Rankin C, Goldblum JR, Demetri GD, Bramwell V, Ryan CW, Borden E: Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. Cancer 2012, 118(3):770-776.
  • [24]Canter RJ, Borys D, Olusanya A, Li CS, Lee LY, Boutin RD, Christensen SD, Tamurian RM, Monjazeb AM: Phase I trial of Neoadjuvant conformal radiotherapy plus sorafenib for patients with locally advanced soft tissue sarcoma of the extremity. Ann Surg Oncol 2014, 21(5):1616-1623.
  • [25]Hamed HA, Tavallai S, Grant S, Poklepovic A, Dent P: Sorafenib/Regorafenib and Lapatinib interact to kill CNS tumor cells. J Cell Physiol 2015, 230(1):131-139.
  • [26]Ettrich TJ, Seufferlein T: Regorafenib. Recent Results Cancer Res 2014, 201:185-196.
  • [27]Ranieri G, Mammi M, Donato Di Paola E, Russo E, Gallelli L, Citraro R, Gadaleta CD, Marech I, Ammendola M, De Sarro G: Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol 2014, 89(2):322-329.
  • [28]van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schoffski P, Aglietta M, Staddon AP, Beppu Y, Le Cesne A, Gelderblom H, Judson IR, Araki N, Ouali M, Marreaud S, Hodge R, Dewji MR, Coens C, Demetri GD, Fletcher CD, Dei Tos AP, Hohenberger P, EORTC Soft Tissue and Bone Sarcoma Group; PALETTE study group: Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379(9829):1879-1886.
  • [29]McCormack PL: Pazopanib: a review of its use in the management of advanced renal cell carcinoma. Drugs 2014, 74(10):1111-1125.
  • [30]Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J, MacSwords J, Eyler CE, McLendon RE, Heddleston JM, Shou W, Hambardzumyan D, Lee J, Hjelmeland AB, Sloan AE, Bredel M, Stark GR, Rich JN, Bao S: Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 2011, 19(4):498-511.
  • [31]Plastaras JP, Kim SH, Liu YY, Dicker DT, Dorsey JF, McDonough J, Cerniglia G, Rajendran RR, Gupta A, Rustgi AK, Diehl JA, Smith CD, Flaherty KT, El-Deiry WS: Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res 2007, 67(19):9443-9454.
  • [32]Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, Tsujiuchi T: Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep 2010, 24(2):501-505.
  • [33]Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009, 15(12):4234-4241.
  • [34]Chen J, Guo T, Zhang L, Qin LX, Singer S, Maki RG, Taguchi T, Dematteo R, Besmer P, Antonescu CR: CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers. Genes Chromosomes Cancer 2012, 51(2):186-195.
  • [35]Trucco M, Loeb D: Sarcoma stem cells: do we know what we are looking for? Sarcoma 2012, 2012:291705.
  • [36]Lipinski M, Braham K, Philip I, Wiels J, Philip T, Goridis C, Lenoir GM, Tursz T: Neuroectoderm-associated antigens on Ewing’s sarcoma cell lines. Cancer Res 1987, 47(1):183-187.
  • [37]Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS: On becoming neural: what the embryo can tell us about differentiating neural stem cells. Am J Stem Cells 2013, 2(2):74-94.
  文献评价指标  
  下载次数:46次 浏览次数:26次