期刊论文详细信息
BMC Bioinformatics
Routine performance and errors of 454 HLA exon sequencing in diagnostics
Norbert Niklas1  Johannes Pröll1  Martin Danzer1  Stephanie Stabentheiner1  Katja Hofer1  Christian Gabriel1 
[1] Red Cross Transfusion Service for Upper Austria, Krankenhausstraße 7, 4017 Linz, Austria
关键词: Quality control;    Error characteristics;    Human leukocyte antigen typing;    Next-generation sequencing;   
Others  :  1087859
DOI  :  10.1186/1471-2105-14-176
 received in 2012-11-23, accepted in 2013-05-30,  发布年份 2013
PDF
【 摘 要 】

Background

Next-generation sequencing (NGS) has changed genomics significantly. More and more applications strive for sequencing with different platforms. Now, in 2012, after a decade of development and evolution, NGS has been accepted for a variety of research fields. Determination of sequencing errors is essential in order to follow next-generation sequencing beyond research use only. This study describes the overall 454 system performance of using multiple GS Junior runs with an in-house established and validated diagnostic assay for human leukocyte antigen (HLA) exon sequencing. Based on this data, we extracted, evaluated and characterized errors and variants of 60 HLA loci per run with respect to their adjacencies.

Results

We determined an overall error rate of 0.18% in a total of 118,484,408 bases. 31.3% of all reads analyzed (n=349,503) contain one or more errors. The largest group are deletions that account for 50% of the errors. Incorrect bases are not distributed equally along sequences and tend to be more frequent at sequence ends. Certain sequence positions in the middle or at the beginning of the read accumulate errors. Typically, the corresponding quality score at the actual error position is lower than the adjacent scores.

Conclusions

Here we present the first error assessment in a human next-generation sequencing diagnostics assay in an amplicon sequencing approach. Improvements of sequence quality and error rate that have been made over the years are evident and it is shown that both have now reached a level where diagnostic applications become feasible. Our presented data are better than previously published error rates and we can confirm and quantify the often described relation of homopolymers and errors. Nevertheless, a certain depth of coverage is needed, in particular with challenging areas of the sequencing target. Furthermore, the usage of error correcting tools is not essential but might contribute towards the capacity and efficiency of a sequencing run.

【 授权许可】

   
2013 Niklas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117051948946.pdf 453KB PDF download
Figure 6. 58KB Image download
Figure 5. 34KB Image download
Figure 4. 33KB Image download
Figure 3. 21KB Image download
Figure 2. 12KB Image download
Figure 3. 69KB Image download
【 图 表 】

Figure 3.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kodama Y, Shumway M, Leinonen R: The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 2012, 40:D54-D56.
  • [2]Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al.: Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 2012, 30:434-439.
  • [3]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [4]Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8:R143. BioMed Central Full Text
  • [5]De Schrijver JM, De LK, Lefever S, Sabbe N, Pattyn F, Van NF, et al.: Analysing 454 amplicon resequencing experiments using the modular and database oriented Variant Identification Pipeline. BMC Bioinforma 2010, 11:269. BioMed Central Full Text
  • [6]Voelkerding KV, Dames SA, Durtschi JD: Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009, 55:641-658.
  • [7]Voelkerding KV, Dames S, Durtschi JD: Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2009, 2010(12):539-551.
  • [8]Gabriel C, Stabentheiner S, Danzer M, Proll J: What Next? The Next Transit from Biology to Diagnostics: Next Generation Sequencing for Immunogenetics. Transfus Med Hemother 2011, 38:308-317.
  • [9]Lank SM, Golbach BA, Creager HM, Wiseman RW, Keskin DB, Reinherz EL, et al.: Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing. BMC Genomics 2012, 13:378. BioMed Central Full Text
  • [10]Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, et al.: High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens 2009, 74:393-403.
  • [11]Holcomb CL, Hoglund B, Anderson MW, Blake LA, Bohme I, Egholm M, et al.: A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens 2011, 77:206-217.
  • [12]Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, et al.: High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A 2012, 109:8676-8681.
  • [13]Shiina T, Suzuki S, Ozaki Y, Taira H, Kikkawa E, Shigenari A, et al.: Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens 2012.
  • [14]Gabriel C, Danzer M, Hackl C, Kopal G, Hufnagl P, Hofer K, et al.: Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol 2009, 70:960-964.
  • [15]Proll J, Danzer M, Stabentheiner S, Niklas N, Hackl C, Hofer K, et al.: Sequence capture and next generation resequencing of the MHC region highlights potential transplantation determinants in HLA identical haematopoietic stem cell transplantation. DNA Res 2011, 18:201-210.
  • [16]Spellman SR, Eapen M, Logan BR, Mueller C, Rubinstein P, Setterholm MI, et al.: A perspective on the selection of unrelated donors and cord blood units for transplantation. Blood 2012, 120:259-265.
  • [17]Danzer M, Niklas N, Stabentheiner S, Hofer K, Pröll J, Stückler C, et al.: Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: A transition from research to diagnostics. BMC Genomics 2013, 14:221. BioMed Central Full Text
  • [18]Skums P, Dimitrova Z, Campo DS, Vaughan G, Rossi L, Forbi JC, et al.: Efficient error correction for next-generation sequencing of viral amplicons. BMC Bioinforma 2012, 13(10):S6.
  • [19]Prabakaran P, Streaker E, Chen W, Dimitrov DS: 454 antibody sequencing - error characterization and correction. BMC Res Notes 2011, 4:404. BioMed Central Full Text
  • [20]454 Life Science Corp: 454 Sequencing System Software Manual v2.7. 454 Manual 2012.
  • [21]Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW: Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 2012, 9:425-426.
  • [22]Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, et al.: Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res 2008, 18:763-770.
  • [23]Huse SM, Welch DM, Morrison HG, Sogin ML: Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 2010, 12:1889-1898.
  • [24]Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, Martin JF: Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 2011, 12:245. BioMed Central Full Text
  • [25]454 Life Science Corp: 454 Sequencing System Guidelines for Amplicon Experimental Design. 454 Guidelines 2011.
  • [26]Frey B, Suppmann B: Demonstration of the Expand™ PCR System’s Greater Fidelity and Higher Yields with a lacI-based PCR Fidelity Assay. Biochemica 1995, 1:8-9.
  • [27]Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ: Removing noise from pyrosequenced amplicons. BMC Bioinforma 2011, 12:38. BioMed Central Full Text
  • [28]Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, Slavich L, et al.: Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol 2010, 71:1033-1042.
  • [29]Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, et al.: An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinforma 2012, 13:8. BioMed Central Full Text
  • [30]Vandenbroucke I, Van MH, Verhasselt P, Thys K, Mostmans W, Dumont S, et al.: Minor variant detection in amplicons using 454 massive parallel pyrosequencing: experiences and considerations for successful applications. Biotechniques 2011, 51:167-177.
  • [31]McElroy KE, Luciani F, Thomas T: GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics 2012, 13:74. BioMed Central Full Text
  • [32]Lysholm F, Andersson B, Persson B: An efficient simulator of 454 data using configurable statistical models. BMC Res Notes 2011, 4:449. BioMed Central Full Text
  • [33]Balzer S, Malde K, Lanzen A, Sharma A, Jonassen I: Characteristics of 454 pyrosequencing data–enabling realistic simulation with flowsim. Bioinformatics 2010, 26:i420-i425.
  • [34]Churchill GA, Waterman MS: The accuracy of DNA sequences: estimating sequence quality. Genomics 1992, 14:89-98.
  • [35]Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG: The IMGT/HLA database. Nucleic Acids Res 2011, 39:D1171-D1176.
  • [36]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  文献评价指标  
  下载次数:25次 浏览次数:20次