BioMedical Engineering OnLine | |
A mechanical model for predicting the probability of osteoporotic hip fractures based in DXA measurements and finite element simulation | |
Enrique López3  Elena Ibarz1  Antonio Herrera4  Jesús Mateo4  Antonio Lobo-Escolar4  Sergio Puértolas1  Luis Gracia2  | |
[1] Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain | |
[2] Engineering and Architecture School, University of Zaragoza, María de Luna, 3, 50018, Zaragoza, Spain | |
[3] Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain | |
[4] Aragón Health Sciences Institute, Zaragoza, Spain | |
关键词: Fracture probability; Fracture risk; Finite elements; Predictive model; Osteoporotic fracture; Osteoporosis; | |
Others : 797984 DOI : 10.1186/1475-925X-11-84 |
|
received in 2012-08-31, accepted in 2012-11-07, 发布年份 2012 | |
【 摘 要 】
Background
Osteoporotic hip fractures represent major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture, from BMD measurements. The combination of biomechanical models with clinical studies could better estimate bone strength and supporting the specialists in their decision.
Methods
A model to assess the probability of fracture, based on the Damage and Fracture Mechanics has been developed, evaluating the mechanical magnitudes involved in the fracture process from clinical BMD measurements. The model is intended for simulating the degenerative process in the skeleton, with the consequent lost of bone mass and hence the decrease of its mechanical resistance which enables the fracture due to different traumatisms. Clinical studies were chosen, both in non-treatment conditions and receiving drug therapy, and fitted to specific patients according their actual BMD measures. The predictive model is applied in a FE simulation of the proximal femur. The fracture zone would be determined according loading scenario (sideway fall, impact, accidental loads, etc.), using the mechanical properties of bone obtained from the evolutionary model corresponding to the considered time.
Results
BMD evolution in untreated patients and in those under different treatments was analyzed. Evolutionary curves of fracture probability were obtained from the evolution of mechanical damage. The evolutionary curve of the untreated group of patients presented a marked increase of the fracture probability, while the curves of patients under drug treatment showed variable decreased risks, depending on the therapy type.
Conclusion
The FE model allowed to obtain detailed maps of damage and fracture probability, identifying high-risk local zones at femoral neck and intertrochanteric and subtrochanteric areas, which are the typical locations of osteoporotic hip fractures.
The developed model is suitable for being used in individualized cases. The model might better identify at-risk individuals in early stages of osteoporosis and might be helpful for treatment decisions.
【 授权许可】
2012 López et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706092823377.pdf | 2080KB | download | |
Figure 5. | 70KB | Image | download |
Figure 4. | 123KB | Image | download |
Figure 3. | 88KB | Image | download |
Figure 2. | 70KB | Image | download |
Figure 1. | 82KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]National Osteoporosis Foundation: Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2010. ISBN: 978-0-9798989-9-0
- [2]Johnell O, Kanis J: Epidemiology of osteoporotic fractures. Osteoporos Int 2005, 16(Suppl 2):S3-S7.
- [3]Instituto de Información Sanitaria: Estadísticas Comentadas: La Atención a La Fractura De Cadera En Los Hospitales Del SNS (on line). Ministerio de Sanidad y Política Social, Madrid; 2010. http:es/estadEstudios/estadisticas/cmbdhome.htm webcite. Accessed 7 September 2010
- [4]Herrera A, Martínez AA, Ferrández L, Moreno A: Epidemiology of osteoporotic hip fractures in Spain. Int Orthop 2006, 30(1):11-14.
- [5]Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006, 17(12):1726-1733.
- [6]Kannus P, Parkkari J, Sievanen H, Heinonen A, Vuori I, Järvinen M: Epidemiology of hip fractures. Bone 1996, 18(Suppl 1):S57-S63.
- [7]Bessette L, Jean S, Lapointe-Garant MP, El B, Davison KS, Ste-Marie LG, Brown JP: Direct medical costs attributable to peripheral fractures in Canadian post-menopausal women. Osteoporos Int 2011. (Epub ahead of print)
- [8]Bass E, French DD, Bradham DD, Rubestein LZ: Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann Epidemiol 2007, 17(7):514-519.
- [9]Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N: Assessment of fracture risk. Osteoporos Int 2005, 16(6):581-589.
- [10]Kanis JA, Black D, Cooper C, Dargent P, Dawson-Hughes B, De Laet C, Delmas P, Eisman J, Johnell O, Johnsson B, Melton L, Oden A, Papapoulos S, Pols H, Rizzoli R, Silman A, Tenenhouse A: A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 2002, 13(7):527-536.
- [11]Kanis JA, Oden A, Johnell O, De Laet C, Brown J, Burckhardt P, Cooper C, Christiensen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N: The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007, 18(8):1033-1046.
- [12]Kanis JA, Johnell O, Oden AJH, McCloskey E: FRAX and the assessment of fracture probablility in men and women from the UK. Osteoporos Int 2008, 19(4):385-397.
- [13]Van Geel TA, van den Bergh JP, Dinant GJ, Geusens PP: Individualizing fracture risk prediction. Maturitas 2010, 65(2):143-148.
- [14]Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, Cauley JA, Hillier TA, Browner WS, Cummings SR: A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 2009, 169(22):2087-2094.
- [15]Moayyeri A, Kaptoge S, Dalzell N, Bingham S, Luben RN, Wareham NJ, Reeve J, Khaw KT: Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 2009, 24(7):1319-1325.
- [16]Langsetmo L, Leslie WD, Zhou W, Goltzman D, Kovacs CS, Prior J, Josse R, Olszynski WP, Davison KS, Anastassiades T, Towheed T, Hanley DA, Kaiser S, Kreiger N: Using the same bone density reference database for men and women provides a simpler estimation of fracture risk. J Bone Miner Res 2010, 25(10):2108-2114.
- [17]Boehm HF, Horng A, Notohamiprodjo M, Eckstein F, Burklein D, Panteleon A, Lutz J, Reiser M: Prediction of the fracture load of whole proximal femur specimens by topological analysis of the mineral distribution in DXA-scan images. Bone 2008, 43(5):826-831.
- [18]Schechner Z, Luo G, Kaufman JJ, Siffert RS: A Poisson process model for hip fracture risk. Med Biol Eng Comput 2010, 48(8):799-810.
- [19]Baker-LePain JC, Luker KR, Lynch JA, Parimi N, Nevitt MC, Lane NE: Active shape modeling of the hip in the prediction of incident hip fracture. J Bone Miner Res 2011, 26(3):468-474.
- [20]Lee TC, McHugh PE, O'Brien FJ, O’Mahoney D, Taylor D, Bruzzi M, Rackard SM, Kennedy OD, Mahony NJ, Harrison N, Lohfield S, Brennan O, Gleeson J, Hazenberg JG, Mullins L, Tyndyk M, McNamara LM, O’Kelly KU, Prendergast PJ: Bone for life: osteoporosis, bone remodelling and computer simulation. In Topics in Bio-Mechanical Engineering. Edited by Prendergast PJ, McHugh PE. Dublin: Trinity Centre for Bio-Engineering & National Centre for Biomedical Engineering Science; 2004:58-93.
- [21]Boccaccio A, Vena P, Gastaldi D, Franzoso G, Pietrabissa R, Pappalettere C: Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects. Proc Inst Mech Eng H 2008, 222(7):1023-1036.
- [22]Zhang L, Yang G, Wu L, Yu B: The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation. Clin Biomech 2010, 25(2):166-172.
- [23]Macneil JA, Adachi JD, Goltzman D, Josse RG, Kovacs CS, Prior JC, Olszynski W, Davison KS, Kaiser SM: Predicting fracture using 2D finite element modelling. Med Eng Phys 2011. (Epub ahead of print)
- [24]Kaneko M, Ohnishi I, Bessho M, Matsumoto T, Ohashi S, Tobita K, Nakamura K: Prediction of proximal femur strength by a quantitative computed tomography-based finite element method – creation of predicted strength data of the proximal femur according to age range in a normal population and analysis of risk factors for hip fracture. J Bone Joint Surg Br 2011, 93-B no(SUPP II):216.
- [25]Bryan R, Nair PB, Taylor M: Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J Biomech 2009, 42(13):2171-2176.
- [26]Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K: Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone 2009, 45(2):226-231.
- [27]Derikx LC, Vis R, Meinders T, Verdonschot N, Tanck E: Implementation of asymmetric yielding in case-specific finite element models improves the prediction of femoral fractures. Comput Methods Biomech Biomed Engin 2011, 14(2):183-193.
- [28]Tellache M, Pithioux M, Chabrand P, Hochard C: Femoral neck fracture prediction by anisotropic yield criteria. Eur J Comp Mech 2009, 18(1):33-41.
- [29]Amin S, Kopperdhal DL, Melton LJ 3rd, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S: Association of hip strength estimates by finite‐element analysis with fractures in women and men. J Bone Miner Res 2011, 26(7):1593-1600.
- [30]Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Balck DM: Femoral Bone strength and its relation to cortical and trabecular changes after treatment with PTH, Alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 2008, 23(12):1974-1982.
- [31]Carter DR, Hayes WC: The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977, 59(7):954-962.
- [32]Herrera A, Panisello JJ, Ibarz E, Cegoñino J, Puértolas JA, Gracia L: Long-term study of bone remodelling after femoral stem: a comparison between DEXA and finite element simulation. J Biomech 2007, 40(16):3615-3625.
- [33]Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodríguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA: Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 2004, 350(12):1189-1199.
- [34]Riis BJ, Ise J, von Stein T, Bagger Y, Christiansen C: Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 2001, 16(10):1871-1878.
- [35]Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB: Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 2007, 146(5):326-339.
- [36]Watts NB, Diab DL: Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab Apr 2010, 95(4):1555-1565.
- [37]Felsenberg D, Czerwinski E, Stakkestad J, Christiansen C, Civitelli R, Drezner MK, et al.: Efficacy of monthly oral ibandronate is maintained over 5 years: the MOBILE LTE study. Osteoporos Int 2009, 20(Suppl. 1):S15. Abstract 0C32
- [38]Di Munno O, Delle Sedie A: Efficacy of ibandronate: a long term confirmation. Clin Cases Miner Bone Metab Jan 2010, 7(1):23-26.
- [39]Pazianas M, Cooper C, Ebetino FH, Russell RG: Long-term treatment with bisphosphonates and their safety in postmenopausal osteoporosis. Ther Clin Risk Manag 2010, 6:325-343. PMID: 20668715
- [40]Rossini M, Idolazzi L, Adami S: Evidence of sustained vertebral and nonvertebral antifracture efficacy with ibandronate therapy: a systematic review. Ther Adv Musculoskelet Dis Apr 2011, 3(2):67-79.
- [41]Pazianas M, Abrahamsen B: Safety of bisphosphonates. Bone Jul 2011, 49(1):103-110.
- [42]Bianchi G, Czerwinski E, Kenwright A, Burdeska A, Recker RR, Felsenberg D: Long-term administration of quarterly IV ibandronate is effective and well tolerated in postmenopausal osteoporosis: 5-year data from the DIVA study long-term extensión. Osteoporos Int 2012, 23:1769-1778.
- [43]Kanis JA, Burlet N, Cooper CP, Delmas D, Reginster JY, Borgstrom F, Rizzoli R: European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008, 19:399-428.
- [44]Compston J: The use of combination therapy in the treatment of postmenopausal osteoporosis. Endocrine 2012, 41:11-18.
- [45]Schafer AL, Sellmeyer DE, Palermo L, Hietpas J, Eastell R, Shoback DM, Black DM: Six months of parathyroid hormone (1–84) administered concurrently versus sequentially with monthly Ibandronate over two years: the PTH and Ibandronate combination study (PICS) randomized trial. J Clin Endocrinol Metab Oct 2012, 97(10):3522-3529.
- [46]Walker MD, Cusano NE, Sliney J Jr, Romano M, Zhang C, McMahon DJ, Bilezikian JP: Combination therapy with risedronate and teriparatide in male osteoporosis. Endocrine 2012. Oct 26. [Epub ahead of print]. PMID:23099796
- [47]Cusano NE, Bilezikian JP: Combination anabolic and antiresorptive therapy for osteoporosis. Endocrinol Metab Clin North Am Sep 2012, 41(3):643-654. Epub 2012 May 19
- [48]Mazess RB, Barden H: Bone density of the spine and femur in adult white females. Calcif Tissue Int 1999, 65(2):91-99.
- [49]Hanson J: Standardization of femur BMD. J Bone Miner Res 1997, 12(8):1316-1317.
- [50]Kargarnovin MH, Bagher-Ebrahimi M, Katoozian HR: Damage Initiation and Growth in a Long Bone Under increasing Monotonic Loading Using the Continuum Damage Mechanics Principle. 2006. [Proc. Fifth International Conf on Eng Computational Technology, paper 191]
- [51]Paris P, Erdogan F: A critical analysis of crack propagation laws. Jour Basic Engineering 1963, 85(4):528-534.
- [52]Taylor D: Microcrack growth parameters for compact bone deduced from stiffness variations. J Biomech 1998, 31(7):587-592. http://dx.doi.org/10.1016/S0021-9290(98)00050-5 webcite
- [53]Dassault Systèmes[http://www.3ds.com/ webcite]
- [54]Gruen TA, McNeice GM, Amstutz HC: Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 1979, 141:17-27.
- [55]Kerner J, Huiskes R, Van Lenthe GH, Weinans H, van Rietbergen B, Engh CA, Amis AA: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptative remodelling. J Biomech 1999, 32(7):695-703.
- [56]Rietbergen B, Huiskes R: Load transfer and stress shielding of the hydroxyapatite ABG hip. A Study of stem length and proximal fixation. J Arthroplasty 2001, 16(8 suppl 1):55-63.
- [57]Gutiérrez P, Doménech P, Roca J: Biomecánica de la cadera (in Spanish). In Patología De La Cadera En El Adulto. Edited by López-Prats F. Madrid: Sociedad Española de Cirugía Ortopédica y Traumatología; 2004:11-19.
- [58]Sarikanat M, Yildiz H: Determination of bone density distribution in proximal femur by using the 3D orthotropic bone adaptation model. J of Engineering in Medicine 2011, 225:365-375.
- [59]Tsouknidas A, Anagnostidis K, Maliaris G, Michailidis N: Fracture risk in the femoral hip region: a finite element analysis supported experimental approach. J Biomech 2012, 45:1959-1964.