期刊论文详细信息
BMC Bioinformatics
Gains of ubiquitylation sites in highly conserved proteins in the human lineage
Dong Seon Kim1  Yoonsoo Hahn1 
[1] Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 156-756, Korea
关键词: Molecular evolution;    Human genome;    Human evolution;    Ubiquitylation;   
Others  :  1088064
DOI  :  10.1186/1471-2105-13-306
 received in 2012-05-26, accepted in 2012-11-14,  发布年份 2012
PDF
【 摘 要 】

Background

Post-translational modification of lysine residues of specific proteins by ubiquitin modulates the degradation, localization, and activity of these target proteins. Here, we identified gains of ubiquitylation sites in highly conserved regions of human proteins that occurred during human evolution.

Results

We analyzed human ubiquitylation site data and multiple alignments of orthologous mammalian proteins including those from humans, primates, other placental mammals, opossum, and platypus. In our analysis, we identified 281 ubiquitylation sites in 252 proteins that first appeared along the human lineage during primate evolution: one protein had four novel sites; four proteins had three sites each; 18 proteins had two sites each; and the remaining 229 proteins had one site each. PML, which is involved in neurodevelopment and neurodegeneration, acquired three sites, two of which have been reported to be involved in the degradation of PML. Thirteen human proteins, including ERCC2 (also known as XPD) and NBR1, gained human-specific ubiquitylated lysines after the human-chimpanzee divergence. ERCC2 has a Lys/Gln polymorphism, the derived (major) allele of which confers enhanced DNA repair capacity and reduced cancer risk compared with the ancestral (minor) allele. NBR1 and eight other proteins that are involved in the human autophagy protein interaction network gained a novel ubiquitylation site.

Conclusions

The gain of novel ubiquitylation sites could be involved in the evolution of protein degradation and other regulatory networks. Although gains of ubiquitylation sites do not necessarily equate to adaptive evolution, they are useful candidates for molecular functional analyses to identify novel advantageous genetic modifications and innovative phenotypes acquired during human evolution.

【 授权许可】

   
2012 Kim and Hahn; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117072038290.pdf 428KB PDF download
Figure 5. 92KB Image download
Figure 4. 197KB Image download
Figure 3. 55KB Image download
Figure 2. 27KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kerscher O, Felberbaum R, Hochstrasser M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006, 22:159-180.
  • [2]Konstantinova IM, Tsimokha AS, Mittenberg AG: Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol 2008, 267:59-124.
  • [3]Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007, 28(5):730-738.
  • [4]Chen ZJ: Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 2005, 7(8):758-765.
  • [5]Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR: Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 2008, 411(2):249-260.
  • [6]Li WH, Saunders MA: News and views: the chimpanzee and us. Nature 2005, 437(7055):50-51.
  • [7]Varki A, Altheide TK: Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 2005, 15(12):1746-1758.
  • [8]Kim DS, Hahn Y: Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics 2011, 27(1):14-21.
  • [9]Rosso L, Marques AC, Reichert AS, Kaessmann H: Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet 2008, 4(8):e1000150.
  • [10]Hahn Y, Jeong S, Lee B: Inactivation of MOXD2 and S100A15A by exon deletion during human evolution. Mol Biol Evol 2007, 24(10):2203-2212.
  • [11]Zhu J, Sanborn JZ, Diekhans M, Lowe CB, Pringle TH, Haussler D: Comparative genomics search for losses of long-established genes on the human lineage. PLoS Comput Biol 2007, 3(12):e247.
  • [12]Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Paabo S: Molecular evolution of FOXP2, a gene involved in speech and language. Nature 2002, 418(6900):869-872.
  • [13]Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, et al.: An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006, 443(7108):167-172.
  • [14]Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, Peng S, Preuss TM, Wohlschlegel JA, Geschwind DH: Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009, 462(7270):213-217.
  • [15]Lynch VJ, May G, Wagner GP: Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 2011, 480(7377):383-386.
  • [16]Kim DS, Hahn Y: Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence. Bioinformatics 2011, 27(18):2494-2501.
  • [17]Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127(3):635-648.
  • [18]Molina H, Horn DM, Tang N, Mathivanan S, Pandey A: Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 2007, 104(7):2199-2204.
  • [19]Zhao P, Viner R, Teo CF, Boons GJ, Horn D, Wells L: Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 2011, 10(9):4088-4104.
  • [20]Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325(5942):834-840.
  • [21]Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, et al.: Global identification of modular cullin-RING ligase substrates. Cell 2011, 147(2):459-474.
  • [22]Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al.: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011, 44(2):325-340.
  • [23]Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR: Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 2011, 286(48):41530-41538.
  • [24]Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C: A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011, 10(10):M111.013284.
  • [25]Xu G, Paige JS, Jaffrey SR: Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 2010, 28(8):868-873.
  • [26]Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012, 40(Database issue):D261-D270.
  • [27]Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al.: Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004, 14(4):708-715.
  • [28]Lehmann AR: DNA repair-deficient diseases, xeroderma pigmentosum, cockayne syndrome and trichothiodystrophy. Biochimie 2003, 85(11):1101-1111.
  • [29]Hemminki K, Xu G, Angelini S, Snellman E, Jansen CT, Lambert B, Hou SM: XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcinogenesis 2001, 22(8):1185-1188.
  • [30]Spitz MR, Wu X, Wang Y, Wang LE, Shete S, Amos CI, Guo Z, Lei L, Mohrenweiser H, Wei Q: Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 2001, 61(4):1354-1357.
  • [31]Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, et al.: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009, 33(4):505-516.
  • [32]Lamark T, Kirkin V, Dikic I, Johansen T: NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 2009, 8(13):1986-1990.
  • [33]D’Agostino C, Nogalska A, Cacciottolo M, Engel WK, Askanas V: Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 2011, 122(5):627-636.
  • [34]Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT: RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008, 10(5):538-546.
  • [35]Saeed S, Logie C, Stunnenberg HG, Martens JH: Genome-wide functions of PML-RARalpha in acute promyelocytic leukaemia. Br J Cancer 2011, 104(4):554-558.
  • [36]Salomoni P, Betts-Henderson J: The role of PML in the nervous system. Mol Neurobiol 2011, 43(2):114-123.
  • [37]Jung MY, Lorenz L, Richter JD: Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 2006, 26(11):4277-4287.
  • [38]Connelly MA, Williams DL: Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr Opin Lipidol 2004, 15(3):287-295.
  • [39]Ye J: Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 2007, 3(8):e108.
  • [40]Feng GG, Li C, Huang L, Tsunekawa K, Sato Y, Fujiwara Y, Komatsu T, Honda T, Fan JH, Goto H, et al.: Naofen, a novel WD40-repeat protein, mediates spontaneous and tumor necrosis factor-induced apoptosis. Biochem Biophys Res Commun 2010, 394(1):153-157.
  • [41]Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, et al.: Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 2010, 87(3):418-423.
  • [42]Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, Keighren M, Bahlo M, Bromhead CJ, Budd P, et al.: Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet 2011, 88(4):508-515.
  • [43]Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, et al.: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996, 14(3):269-276.
  • [44]Ruchaud S, Carmena M, Earnshaw WC: Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 2007, 8(10):798-812.
  • [45]Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R, Peter M: A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell 2007, 12(6):887-900.
  • [46]Maerki S, Olma MH, Staubli T, Steigemann P, Gerlich DW, Quadroni M, Sumara I, Peter M: The Cul3-KLHL21 E3 ubiquitin ligase targets aurora B to midzone microtubules in anaphase and is required for cytokinesis. J Cell Biol 2009, 187(6):791-800.
  • [47]Caron C, Boyault C, Khochbin S: Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 2005, 27(4):408-415.
  • [48]Hagai T, Toth-Petroczy A, Azia A, Levy Y: The origins and evolution of ubiquitination sites. Mol Biosyst 2012, 8(7):1865-1877.
  • [49]Behrends C, Sowa ME, Gygi SP, Harper JW: Network organization of the human autophagy system. Nature 2010, 466(7302):68-76.
  • [50]Moses AM, Liku ME, Li JJ, Durbin R: Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. Proc Natl Acad Sci USA 2007, 104(45):17713-17718.
  • [51]Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP: A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003, 21(8):921-926.
  文献评价指标  
  下载次数:36次 浏览次数:7次