期刊论文详细信息
Biological Procedures Online
The diversity of fungal genome
Tapan Kumar Mohanta1  Hanhong Bae1 
[1] Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
关键词: Stramenopiles and micorsporidia;    Entomophthoromycota;    Glomeromycota;    Blastocladiomycota;    Neocallimastigomycota;    Monoblepharidomycota;    Chytridiomycota;    Basidiomycota;    Ascomycota;   
Others  :  1175009
DOI  :  10.1186/s12575-015-0020-z
 received in 2014-12-05, accepted in 2015-01-31,  发布年份 2015
PDF
【 摘 要 】

The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus.

【 授权许可】

   
2015 Mohanta and Bae; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150426014823677.pdf 657KB PDF download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Hawksworth D: The magnitude of fungal diversity: the 1·5 million species estimate revisited. Mycol Res 2001, 105:1422-32.
  • [2]Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, et al.: Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009, 5:e1000344.
  • [3]Das M, Royer TV, Leff LG: Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 2007, 73:756-67.
  • [4]Perotto S, Actis-Perino E, Perugini J, Bonfante P: Molecular diversity of fungi from ericoid mycorrhizal roots. Mol Ecol 1996, 5:123-31.
  • [5]Anderson IC, Campbell CD, Prosser JI: Diversity of fungi in organic soils under a moorland – Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 2003, 5:1121-32.
  • [6]Schardl CL, Leuchtmann A, Spiering MJ: Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 2004, 55:315-40.
  • [7]Mohanta TK, Bae H: Functional Genomics and Signaling Events in Mycorrhizal Symbiosis. J Plant Interact 2015, 10:21-40.
  • [8]Lau MCY, Jurgens JA, Farrell RL: Correction for pointing et al., highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci 2009, 107:1254-4.
  • [9]Ma L, Catranis CM, Starmer WT, Rogers SO: Revival and characterization of fungi from ancient polar ice. Mycologist 1999, 13:70-3.
  • [10]Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA: Are tropical fungal endophytes hyperdiverse? Ecol Lett 2000, 3:267-74.
  • [11]Ingham RE, Trofymow JA, Ingham ER, Coleman DC: Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 1985, 55:119-40.
  • [12]Yuste JC, Peñuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, et al.: Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 2011, 17:1475-86.
  • [13]Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, et al.: The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 2012, 14:1477-87.
  • [14]Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, et al.: A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 2010, 8:109. BioMed Central Full Text
  • [15]Whitt J, Shipley SM, Newman DJ, Zuck KM: Tetramic acid analogues produced by co-culture of Saccharopolyspora erythraea with Fusarium pallidoroseum. J Nat Prod 2014, 77:173-7.
  • [16]Demain A: Valuable secondary metabolites from fungi. In Biosynth Mol Genet Fungal Second Metab SE - 1. Edited by Martín J-F, García-Estrada C, Zeilinger S. Springer, New York; 2014:1-15.
  • [17]Montoya S, Sánchez Ó, Levin L: Mathematical Modeling of Lignocellulolytic Enzyme Production from Three Species of White Rot Fungi by Solid-State Fermentation. In Adv Comput Biol SE - 52. Volume 232. Edited by Castillo LF, Cristancho M, Isaza G, Pinzón A, Rodríguez JMC. Springer International Publishing; 2014:371–377.
  • [18]Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, et al.: Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 2014, 110:85-90.
  • [19]Nazari L, Pattori E, Terzi V, Morcia C, Rossi V: Influence of temperature on infection, growth, and mycotoxin production by Fusarium langsethiae and F. sporotrichioides in durum wheat. Food Microbiol 2014, 39:19-26.
  • [20]Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU: Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight &. Arn Phytomedicine 2014, 21:541-6.
  • [21]Agarwal V, Moore BS: Fungal polyketide engineering comes of age. Proc Natl Acad Sci 2014, 111(34):12278-9.
  • [22]Hibbett D, et al.: A higher level phylogenetic classification of the fungi. Mycol Res 2007, 111:509-47.
  • [23]Humber RA: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon 2012, 120:477-92.
  • [24]Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al.: MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 2014, 42(Database issue):D699-704.
  • [25]Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, et al.: The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 2014, 42:D26-31.
  • [26]Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, et al.: Fungal Biology Fueling the future with fungal genomics. Mycology 2011, 2:192-209.
  • [27]Galagan JE, Henn MR, Ma L-J, Cuomo C, Birren B: Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 2005, 15:1620-31.
  • [28]Tunlid A, Talbot NJ: Genomics of parasitic and symbiotic fungi. Genomics 2002, 5:513-9.
  • [29]Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, et al.: Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002, 99:16144-9.
  • [30]Koszul R, Caburet S, Dujon B, Fischer G: Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 2004, 23:234-43.
  • [31]Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al.: Genome evolution in yeasts. Nature 2004, 430:35-44.
  • [32]Kellis M, Birren BW, Lander ES: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004, 428:617-24.
  • [33]Lavergne S, Muenke NJ, Molofsky J: Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 2010, 105:109-16.
  • [34]Wang W, Kerstetter R, Michael TP: Evolution of genome size in duckweeds (Lemnaceae). J Bot 2011, 2011:1-9.
  • [35]Petrov D: Mutational equilibrium model of genome size evolution. Theor Popul Biol 2002, 61:531-44.
  • [36]Gregory TR, Hebert PDN: The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 1999, 9:317-24.
  • [37]Petrov D: Evolution of genome size: new approaches to an old problem. Trends Genet 2001, 17:23-8.
  • [38]Thomas C: The genetic organization of chromosomes. Annu Rev Genet 1971, 5:237-56.
  • [39]Sahin A, Kaauwen MV, Esselink D, Bargsten JW, Tuyl JM, Visser RG, et al.: Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics 2012, 13:640. BioMed Central Full Text
  • [40]Oslon-Manning CF, Wagner MR, Mitchell-Olds T: Adaptive evolution: evaluating empirical support for theoretical prediction. Nat Rev Genet 2013, 13:867-77.
  • [41]Cavalier-Smith T: Nuclear volume control by nucleoskeletal DNA, seletion for cell volume and cell growth rate, and the solution of the DNA C-value Paradox. J Cell Sci 1978, 34:247-78.
  • [42]Vinogradov A: Buffering : a possible passive-homeostasis role for redundant DNA. J Theor Biol 1998, 193:197-9.
  • [43]Ohno S: So much “junk” DNA in our genome. Brookhaven Symp Biol 1972, 23:366-70.
  • [44]Orgel L, Crick F: Selfish DNA: the ultimate parasite. Nature 1980, 284:604-7.
  • [45]Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER: Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci 1995, 92:8050-4.
  • [46]Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman a H: Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A 2000, 97:6603-7.
  • [47]Petrov D, Hartl D: High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 1998, 15:293-302.
  • [48]Wang H, Guo S, Huang M, Thorsten L, Wei J: Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci China Life Sci 2010, 53:1163-9.
  • [49]Keyl H: A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia 1965, 21:191-3.
  • [50]Labani RM, Elkington TT: Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity (Edinb) 1987, 59:119-28.
  • [51]Ohri D: Genome size variation and plant systematics. Ann Bot 1998, 82:75-83.
  • [52]Ohri D, Fritsch RM, Hanelt P: Systemafics and plam evolution of genome size in Allium (Alliaceae). Plant Syst Evol 1998, 210:57-86.
  • [53]Moriyama EN, Petrov DA, Hartl DL: Letter to the editor genome size and intron size in Drosophila. Mol Biol Evol 1998, 15:770-3.
  • [54]Crollius HR: Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res 2000, 10:939-49.
  • [55]Wessler SR: Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci U S A 2006, 103:17600-1.
  • [56]Ellegren H: Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004, 5:435-45.
  • [57]Whitney KD, Baack EJ, Hamrick JL, Godt MW, Barringer BC, Bennet MD, et al.: A role for nonadaptive process in plant genome size evolution. Proc Natl Acad Sci U S A 2010, 64:2097-109.
  文献评价指标  
  下载次数:56次 浏览次数:16次