期刊论文详细信息
Biotechnology for Biofuels
High temperature pre-digestion of corn stover biomass for improved product yields
Roman Brunecky2  Sarah E Hobdey2  Larry E Taylor2  Ling Tao1  Melvin P Tucker1  Michael E Himmel2  Stephen R Decker2 
[1] National Bioenergy Center, National Renewable Energy Laboratory, 15013, Denver, West Parkway, Golden 80401, CO, USA
[2] Chemical Biosciences Center, National Renewable Energy Laboratory, 15013, Denver, West Parkway, Golden 80401, CO, USA
关键词: Thermotoga maritima;    Acidothermus cellulolyticus;    Caldicellulosiruptor bescii;    E1;    CelA;    Enzymatic hydrolysis;    Pretreatment;    Biomass;   
Others  :  1084222
DOI  :  10.1186/s13068-014-0170-2
 received in 2014-08-26, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Introduction

The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.

Results

We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions.

Conclusion

Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.

【 授权许可】

   
2014 Brunecky et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113155814122.pdf 368KB PDF download
Figure 4. 20KB Image download
Figure 3. 26KB Image download
Figure 2. 27KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Aden A, Foust T: Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 2009, 16(4):535-545.
  • [2]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109(4):1083-1087.
  • [3]Drissen RET, Maas RHW, Tramper J, Beeftink HH: Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation. Biocatal Biotransformation 2009, 27(1):27-35.
  • [4]Olofsson K, Bertilsson M, Liden G: A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 2008, 1(1):7. BioMed Central Full Text
  • [5]Xu Z, Huang F: Pretreatment methods for bioethanol production.Appl Biochem Biotechnol 2014, 1–20.
  • [6]Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M: Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 2000, 25(4):184-192.
  • [7]Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ: Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 2013, 342(6165):1513-1516.
  • [8]Baker JO, Adney WS, Nleves RA, Thomas SR, Wilson DB, Himmel ME: A new thermostable endoglucanase, Acidothermus cellulolyticus E1. Appl Biochem Biotechnol 1994, 45–46(1):245-256.
  • [9]Zverlov V, Mahr S, Riedel K, Bronnenmeier K: Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology-UK 1998, 144:457-465.
  • [10]Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA: Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 1996, 35(33):10648-10660.
  • [11]Gabelsberger J, Liebl W, Schleifer K-H: Purification and properties of recombinant β-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 1993, 40(1):44-52.
  • [12]Park T-H, Choi K-W, Park C-S, Lee S-B, Kang H-Y, Shon K-J, Park J-S, Cha J: Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 2005, 69(4):411-422.
  • [13][http://www.nrel.gov/docs/fy14osti/61563.pdf] webcite Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A: NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover.NREL 2014. []
  • [14]Sluiter A: LAP - Determination of Structural Carbohydrates and Lignin in Biomass. 2006:9572.
  • [15]Aden A: Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. In Other Information: PBD: 1 Jun 20022002. 154. p. Medium: ED; Size.
  • [16]Humbird D: Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. 2011.
  文献评价指标  
  下载次数:76次 浏览次数:10次