期刊论文详细信息
Aquatic Biosystems
Microbial life at high salt concentrations: phylogenetic and metabolic diversity
Aharon Oren1 
[1]Department of Plant and Environmental Sciences, The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Others  :  795262
DOI  :  10.1186/1746-1448-4-2
 received in 2007-11-12, accepted in 2008-04-15,  发布年份 2008
PDF
【 摘 要 】

Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.

【 授权许可】

   
2008 Oren; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705084035600.pdf 684KB PDF download
Figure 5. 42KB Image download
Figure 4. 62KB Image download
Figure 3. 40KB Image download
Figure 2. 68KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Trüper HG, Severin J, Wolhfarth A, Müller E, Galinksi EA: Halophily, taxonomy, phylogeny and nomenclature. In General and Applied Aspects of Halophilism. Edited by Rodriguez-Valera F. New York: Plenum Press; 1991:3-7.
  • [2]Kushner DJ: Life in high salt and solute concentrations. In Microbial Life in Extreme Environments. Edited by Kushner DJ. London: Academic Press; 1978:317-368.
  • [3]Oren A: Halophilic Microorganisms and their Environments. Dordrecht: Kluwer Scientific Publishers; 2002.
  • [4]Oren A: Life at high salt concentrations. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology and Biochemistry. Volume 2. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006::263-282.
  • [5]Ventosa A, Nieto JJ, Oren A: Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 1998, 62:504-544.
  • [6]Oren A: Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 2002, 28:56-63.
  • [7]Oren A: A hundred years of Dunaliella research – 1905–2005. Saline Systems 2005, 1:2. BioMed Central Full Text
  • [8]Zalar P, de Hoog S, Gunde-Cimerman N: Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 1999, 43:57-62.
  • [9]Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A: Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 2000, 32:235-240.
  • [10]Elazari-Volcani B: dimastigamoeba in the bed of the Dead Sea. Nature 1943, 152:275-277.
  • [11]Elazari-Volcani B: A ciliate from the Dead Sea. Nature 1944, 154:335-336.
  • [12]Hauer G, Rogerson A: Heterotrophic protozoa from hypersaline environments. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Edited by Gunde-Cimerman N, Oren A, Plemenitaš A. Dordrecht: Springer; 2005:522-539.
  • [13]Cho BC: Heterotrophic flagellates in hypersaline waters. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Edited by Gunde-Cimerman N, Oren A, Plemenitaš A. Dordrecht: Springer; 2005:543-549.
  • [14]Park JS, Simpson AGB, Lee WJ, Cho BC: Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 2007, 158:397-413.
  • [15]Park JS, Cho BC, Simpson AGB: Halocafetaria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles 2006, 10:493-504.
  • [16]Oren A: The order Halobacteriales. In The Prokaryotes. A Handbook on the Biology of Bacteria. Volume 3. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006::113-164.
  • [17]Arahal DR, Ventosa A: The family Halomonadaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria. Volume 6. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006::811-835.
  • [18]Oren A: The order Haloanaerobiales. In The Prokaryotes. A Handbook on the Biology of Bacteria. Volume 4. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006::804-817.
  • [19]Gibbons NE: Family V. Halobacteriaeae. In Bergey's Manual of Determinative Bacteriology. Edited by Buchanan RE, Gibbons NE. Baltimore: Willams & Wilkins; 1974:269-273.
  • [20]Grant WD, Larsen H: Extremely halophilic archaeobacteria, order Halobacteriales ord. nov. In Bergey's Manual of Systematic Bacteriology. Volume 3. Edited by Staley JT, Bryant MP, Pfennig N, Holt JG. Baltimore: Williams & Wilkins; 1989::2216-2233.
  • [21]Grant WD, Kamekura M, McGenity TJ, Ventosa A: Class III Halobacteria class. nov. In Bergey's Manual of Systematic Bacteriology. Volume 1. 2nd edition. Edited by Boone DR, Castenholz RW, Garrity GM. New York: Springer; 2001::294-334.
  • [22]Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR: Survey of archaeal diversity reveals abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 2004, 70:2230-2239.
  • [23]Elshahed MS, Savage KN, Oren A, Gutierrez MC, Ventosa A, Krumholz LR: Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide and sulfur-rich spring. Int J Syst Evol Microbiol 2004, 54:2275-2279.
  • [24]Savage KN, Krumholz LR, Oren A, Elshahed MS: Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, high-sulfide spring. Int J Syst Evol Microbiol 2007, 57:19-24.
  • [25]Savage KN, Krumholz LR, Oren A, Elshahed MS: Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 2008, in press.
  • [26]Torreblanca M, Rodriguez-Valera R, Juez G, Ventosa A, Kamekura M, Kates M: Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. System Appl Microbiol 1986, 8:89-99.
  • [27]Fukushima T, Usami R, Kamekura M: A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. Saline Systems 2007, 3:2. BioMed Central Full Text
  • [28]Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM: Isolation of haloarchaea that grow at low salinities. Environ Microbiol 2004, 6:591-595.
  • [29]Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF: Searching for species in haloarchaea. Proc Natl Acad Sci USA 2007, 104:14092-14097.
  • [30]Vreeland RH, Litchfield CD, Martin EL, Eliot E: Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980, 30:485-495.
  • [31]Franzmann PD, Wehmeyer U, Stackebrandt E: Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas ad Deleya. Syst Appl Microbiol 1988, 11:16-19.
  • [32]Mata JA, Martinez-Canovas J, Quesada E, Bejar V: A detailed phenotypic characterization of the type strain of Halomonas species. Syst Appl Microbiol 2002, 25:360-375.
  • [33]Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A: Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007, 57:2436-2446.
  • [34]Ntougias S, Zervakis GI, Fasseas C: Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 1989, 57:1975-1983.
  • [35]Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R, Labat M: Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 2007, 57:2307-2313.
  • [36]Switzer Blum J, Stolz JF, Oren A, Oremland RS: Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 2001, 175:208-219.
  • [37]Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L: Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 1994, 44:534-540.
  • [38]Brown AD: Microbial water stress. Bacteriol Rev 1976, 40:803-846.
  • [39]Brown AD: Microbial Water Stress Physiology. Principles and Perspectives. Chichester: John Wiley & Sons; 1990.
  • [40]Lanyi JK: Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 1974, 38:272-290.
  • [41]Oren A: Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 1999, 63:334-348.
  • [42]Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithausen B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine GM, Dale H, Isenbarger TA, Peck RF, Pohlschröder M, Spudich JL, Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S: Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 2000, 97:12176-12181.
  • [43]Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S: Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 2001, 11:1641-1650.
  • [44]Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Sting Weng R, Richie Gan R, Hung P, Date SV, Marcotte E, Hood L, Ng WV: Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 2004, 14:2221-2234.
  • [45]Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D: Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 2005, 15:1336-1343.
  • [46]Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D: The genome of the square archaeon "Haloquadratum walsbyi": life at the limits of water activity. BMC Genomics 2006, 7:169. BioMed Central Full Text
  • [47]Oren A: Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 1986, 32:4-9.
  • [48]Galinski EA: Osmoadaptation in bacteria. Adv Microb Physiol 1986, 37:273-328.
  • [49]Roberts MF: Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 2005, 1:5. BioMed Central Full Text
  • [50]Roberts MF: Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. In Methods in Microbiology, Extremophiles. Volume 35. Edited by Rainey FA, Oren A. Amsterdam: Elsevier-Academic Press; 2006::615-647.
  • [51]Kets EP, Galinski EA, de Wit M, de Bont JAM, Heipieper HJ: Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 1996, 178:6665-6670.
  • [52]Lai M, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP: Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 1991, 173:5352-5358.
  • [53]Galinski EA, Trüper HG: Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 1994, 15:95-108.
  • [54]Desmarais D, Jablonski PE, Fedarko NS, Roberts MF: 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 1997, 179:3146-3153.
  • [55]Imhoff JF, Rodriguez-Valera F: Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol 1984, 160:478-479.
  • [56]Roberts MF, Lai MC, Gunsalus RF: Biosynthetic pathway of the osmolytes Nε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 1992, 174:6688-6693.
  • [57]Robertson DE, Lai M-C, Gunsalus RF, Roberts MF: Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1. Appl Environ Microbiol 1992, 58:2438-2443.
  • [58]Lai M-C, Yang M-R, Chuang M-J: Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portocalensis. Appl Environ Microbiol 1999, 63:828-833.
  • [59]Lai M-C, Wang C-C, Chuang M-J, Wu Y-C, Lee Y-C: Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res Microbiol 2006, 157:948-955.
  • [60]Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG: Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 2004, 8:325-334.
  • [61]Banciu H, Sorokin DY, Rijpstra WIC, Sinninghe Damsté JS, Galinski EA, Takaichi S, Muyzer G, Kuenen JG: Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 2005, 243:181-187.
  • [62]Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G: Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 1999, 172:321-329.
  • [63]Trotsenko YA, Khmelenina VN: Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 2002, 177:123-131.
  • [64]Pocard J-A, Tombras Smith L, Smith GM, Le Rudulier D: A prominent role for glucosylglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress. J Bacteriol 1994, 176:6877-6884.
  • [65]Mikkat S, Galinski EA, Berg G, Minkwitz A, Schoor A: Salt adaptation in pseudomonads: characterization of glucosylglycerol-synthesizing isolates from brackish coastal waters and the rhizosphere. System Appl Microbiol 2000, 23(1):31-40.
  • [66]Kuhlmann AU, Bremer E: Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 2002, 68:772-783.
  • [67]Saum SH, Müller V: Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 2007, 189:6968-6975.
  • [68]Schobert B: Influence of water stress on metabolism of diatoms. 2. Proline accumulation under different conditions of stress and light. Zeitschr Pflanzenphysiol 1977, 85:451-461.
  • [69]Belitsky BR, Brill J, Bremer E, Sonenshein AL: Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 2001, 183:4389-4392.
  • [70]Maskov T, Babel W: Calorimetrically obtained information about the efficiency of ectoine synthesis from glucose in Halomonas elongata. Biochim Biophys Acta 2001, 1527:4-10.
  • [71]Antón J, Rosselló-Mora R, Rodríguez-Valera R, Amann R: Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 2000, 66:3052-3057.
  • [72]Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R: Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 2002, 52:485-491.
  • [73]Oren A, Rodríguez-Valera F, Antón J, Benlloch S, Rosselló-Mora R, Amann R, Coleman J, Russell NJ: Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. In Halophilic Microorganisms. Edited by Ventosa A. Berlin: Springer-Verlag; 2004:63-76.
  • [74]Oren A: The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In The Prokaryotes. A Handbook on the Biology of Bacteria. Volume 7. 3rd edition. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. New York: Springer; 2006::712-740.
  • [75]Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M: Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 2004, 70:6678-6685.
  • [76]Oren A, Heldal M, Norland S, Galinski EA: Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 2002, 6:491-498.
  • [77]Mongodin MEF, Nelson KE, Duagherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Balsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodríguez-Valera F: The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 2005, 102:18147-18152.
  • [78]Madigan MT, Martinko JM: Brock Biology of Microorganisms. 11th edition. Upper Saddle River: Pearson/Prentice Hall;
  文献评价指标  
  下载次数:3次 浏览次数:20次