期刊论文详细信息
Biotechnology for Biofuels
A constraint-based model of Scheffersomyces stipitis for improved ethanol production
Ting Liu2  Wei Zou2  Liming Liu1  Jian Chen2 
[1] State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
[2] Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
关键词: Ethanol production;    Xylose utilization;    Constraint-based simulation;    Genome-scale metabolic model;    Scheffersomyces stipitis;   
Others  :  798222
DOI  :  10.1186/1754-6834-5-72
 received in 2012-07-10, accepted in 2012-09-13,  发布年份 2012
PDF
【 摘 要 】

Background

As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production.

Results

A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives.

Conclusions

Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.

【 授权许可】

   
2012 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706110953511.pdf 1547KB PDF download
Figure 7. 166KB Image download
Figure 6. 183KB Image download
Figure 5. 96KB Image download
Figure 4. 50KB Image download
Figure 3. 107KB Image download
Figure 2. 81KB Image download
Figure 3. 39KB Image download
【 图 表 】

Figure 3.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Wyman CE: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 2007, 25(4):153-157.
  • [2]Balat M, Balat H, Oz C: Progress in bioethanol processing. Prog Energ Combust 2008, 34(5):551-573.
  • [3]Balat M, Balat H: Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 2009, 86(11):2273-2282.
  • [4]Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol 2008, 99(13):5270-5295.
  • [5]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315(5813):804.
  • [6]Alper H, Stephanopoulos G: Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009, 7(10):715-723.
  • [7]Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87(4):1303-1315.
  • [8]Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84(1):37-53.
  • [9]Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI: The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 2004, 23(1):63-68.
  • [10]Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP: Bioethanol production from pentose sugars: Current status and future prospects. Renew Sust Energ Rev 2011, 15(9):4950-4962.
  • [11]Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P: Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnol Mol Biol Rev 2011, 6(1):008-020.
  • [12]Kurtzman CP, Suzuki M: Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 2010, 51(1):2-14.
  • [13]Jeffries TW, Van Vleet JRH: Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 2009, 9(6):793-807.
  • [14]Skoog K, Hahn-Hägerdal B: Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 1990, 56(11):3389-3394.
  • [15]Agbogbo FK, Coward-Kelly G: Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 2008, 30(9):1515-1524.
  • [16]Weierstall T, Hollenberg CP, Boles E: Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 1999, 31(3):871-883.
  • [17]Grootjen D, Van der Lans R, Luyben K: Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb Tech 1990, 12(1):20-23.
  • [18]Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008, 26(6):659-667.
  • [19]Osterlund T, Nookaew I, Nielsen J: Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv 2012, 30(5):979-988.
  • [20]Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R: Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012, 11:27. BioMed Central Full Text
  • [21]Yuan T, Ren Y, Meng K, Feng Y, Yang P, Wang S, Shi P, Wang L, Xie D, Yao B: RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Appl Microbiol Biotechnol 2011, 92(6):1237-1249.
  • [22]Palma M, Goffeau A, Spencer-Martins I, Baret PV: A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 2007, 12(3–4):241-248.
  • [23]Preez JC, Bosch M, Prior B: The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 1986, 23(3):228-233.
  • [24]Watanabe S, Piyanart S, Makino K: Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J 2008, 275(20):5139-5149.
  • [25]Parekh S, Parekh R, Wayman M: Fermentation of xylose and cellobiose by Pichia stipitis and Brettanomyces clausenii. Appl Biochem Biotechnol 1988, 18(1):325-338.
  • [26]Nigam JN: Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 2001, 87(1):17-27.
  • [27]Mo ML, Palsson BO, Herrgard MJ: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009, 3:37. BioMed Central Full Text
  • [28]Kötter P, Ciriacy M: Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1993, 38(6):776-783.
  • [29]Cho JY, Jeffries TW: Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 1998, 64(4):1350-1358.
  • [30]Skoog K, Jeppsson H, Hahn-Hägerdal B: The effect of oxygenation on glucose fermentation with Pichia stipitis. Appl Biochem Biotechnol 1992, 34(1):369-375.
  • [31]Klinner U, Fluthgraf S, Freese S, Passoth V: Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Biotechnol 2005, 67(2):247-253.
  • [32]Skoog K, Hahn-Hägerdal B, Degn H, Jacobsen JP, Jacobsen HS: Ethanol reassimilation and ethanol tolerance in Pichia stipitis CBS 6054 as studied by 13C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 1992, 58(8):2552-2558.
  • [33]Unrean P, Nguyen NHA: Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 2012, 94(5):1387-1398.
  • [34]Passoth V, Zimmermann M, Klinner U: Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 1996, 57–58:201-212.
  • [35]Chen SH, Hwang DR, Chen GH, Hsu NS, Wu YT, Li TL, Wong CH: Engineering transaldolase in Pichia stipitis to improve bioethanol production. ACS Chem Biol 2012, 7(3):481-486.
  • [36]Kilian S, Uden N: Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 1988, 27(5):545-548.
  • [37]Rizzi M, Erlemann P, Bui-Thanh NA, Dellweg H: Xylose fermentation by yeasts. Appl Microbiol Biotechnol 1988, 29(2):148-154.
  • [38]Du J, Li SJ, Zhao HM: Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 2010, 6(11):2150-2156.
  • [39]Jin YS, Cruz J, Jeffries TW: Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 2005, 68(1):42-45.
  • [40]Jin YS, Jones S, Shi NQ, Jeffries TW: Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microb 2002, 68(3):1232-1239.
  • [41]Silva JPA, Mussatto SI, Roberto IC, Teixeira JA: Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energ 2012, 37(1):259-265.
  • [42]Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS: Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 2006, 41(11):2333-2336.
  • [43]Slininger PJ, Dien BS, Gorsich SW, Liu ZL: Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 2006, 72(6):1285-1296.
  • [44]Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, et al.: Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 2007, 25(3):319-326.
  • [45]Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009, 7(2):129-143.
  • [46]Liu LM, Agren R, Bordel S, Nielsen J: Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 2010, 584(12):2556-2564.
  • [47]Apweiler R, Martin MJ, O’Donovan C, Magrane M, Alam-Faruque Y, Antunes R, Barrell D, Bely B, Bingley M, Binns D, et al.: The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010, 38:D142-D148.
  • [48]Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee DY: Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 2010, 9:50. BioMed Central Full Text
  • [49]Andersen MR, Nielsen ML, Nielsen J: Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 2008, 4:178.
  • [50]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35:W182-W185.
  • [51]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-D360.
  • [52]Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2012, 40:D742-D753.
  • [53]Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D: BRENDA, the enzyme information system in 2011. Nucleic Acids Res 2011, 39:D670-D676.
  • [54]Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C: The Transporter Classification Database: recent advances. Nucleic Acids Res 2009, 37:D274-D278.
  • [55]Satish Kumar V, Dasika MS, Maranas CD: Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 2007, 8:212. BioMed Central Full Text
  • [56]Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, et al.: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6(9):1290-1307.
  • [57]Orth JD, Thiele I, Palsson B: What is flux balance analysis? Nat Biotechnol 2010, 28(3):245-248.
  • [58]Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 2005, 187(16):5818-5830.
  • [59]Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84(6):647-657.
  • [60]Pharkya P, Burgard AP, Maranas CD: Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003, 84(7):887-899.
  文献评价指标  
  下载次数:37次 浏览次数:15次