期刊论文详细信息
Biology Direct
Faster evolving Drosophila paralogs lose expression rate and ubiquity and accumulate more non-synonymous SNPs
Lev Y Yampolsky1  Michael A Bouzinier2 
[1] Department of Biological sciences, East Tennessee State University, Johnson City, TN 37614, USA
[2] InterSystems Corporation, One Memorial Drive, Cambridge, MA 02142, USA
关键词: Polymorphism;    Gene expression;    Substitution rate;    Drosophila;    Pseudogenization;    Gene duplication;   
Others  :  793077
DOI  :  10.1186/1745-6150-9-2
 received in 2013-10-01, accepted in 2014-01-07,  发布年份 2014
PDF
【 摘 要 】

Background

Duplicated genes can indefinately persist in genomes if either both copies retain the original function due to dosage benefit (gene conservation), or one of the copies assumes a novel function (neofunctionalization), or both copies become required to perform the function previously accomplished by a single copy (subfunctionalization), or through a combination of these mechanisms. Different models of duplication retention imply different predictions about substitution rates in the coding portion of paralogs and about asymmetry of these rates.

Results

We analyse sequence evolution asymmetry in paralogs present in 12 Drosophila genomes using the nearest non-duplicated orthologous outgroup as a reference. Those paralogs present in D. melanogaster are analysed in conjunction with the asymmetry of expression rate and ubiquity and of segregating non-synonymous polymorphisms in the same paralogs. Paralogs accumulate substitutions, on average, faster than their nearest singleton orthologs. The distribution of paralogs’ substitution rate asymmetry is overdispersed relative to that of orthologous clades, containing disproportionally more unusually symmetric and unusually asymmetric clades. We show that paralogs are more asymmetric in a) clades orthologous to highly constrained singleton genes; b) genes with high expression level; c) genes with ubiquitous expression and d) non-tandem duplications. We further demonstrate that, in each asymmetrically evolving pair of paralogs, the faster evolving member of the pair tends to have lower average expression rate, lower expression uniformity and higher frequency of non-synonymous SNPs than its slower evolving counterpart.

Conclusions

Our findings are consistent with the hypothesis that many duplications in Drosophila are retained despite stabilising selection being more relaxed in one of the paralogs than in the other, suggesting a widespread unfinished pseudogenization. This phenomenon is likely to make detection of neo- and subfunctionalization signatures difficult, as these models of duplication retention also predict asymmetries in substitution rates and expression profiles.

Reviewers

This article has been reviewed by Dr. Jia Zeng (nominated by Dr. I. King Jordan), Dr. Fyodor Kondrashov and Dr. Yuri Wolf.

【 授权许可】

   
2014 Yampolsky and Bouzinier; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705043252347.pdf 1259KB PDF download
Figure 5. 82KB Image download
Figure 4. 41KB Image download
Figure 3. 100KB Image download
Figure 2. 105KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ohno S: Evolution by gene duplication. New York: Springer-Verlag; 1970.
  • [2]Hughes AL: Adaptive Evolution of Genes and Genomes. New York, Oxford: Oxford University Press; 1999.
  • [3]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-1155.
  • [4]Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003, 18(6):292-298.
  • [5]Thornton J: New genes, new functions: gene family evolution and phylogenetics. In Evolutionary Genetics. Edited by Fox CW, Wolf JB. Oxford, New York: Oxford Univ. Press; 2006:157-172.
  • [6]Hahn M: Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 2009, 100:605-617.
  • [7]Innan H, Kondrashov F: The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 2010, 11:97-108.
  • [8]Nei M, Rooney AP: Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 2005, 39:121-152.
  • [9]Pegueroles C, Laurie S, Albà MM: Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Mol Biol Evol 2013, 30:1830-1842.
  • [10]Assis R, Bachtrog D: Neofunctionalization of young duplicate genes in Drosophila. Proc Natl Acad Sci USA 2013, 110:17409-17414.
  • [11]Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151:1531-1545.
  • [12]Proulx SR: Multiple routes to subfunctionalization and gene duplicate specialization. Genetics 2012, 190:737-751.
  • [13]Carson AR, Scherer SW: Identifying concerted evolution and gene conversion in mammalian gene pairs lasting over 100 million years. BMC Evol Biol 2009, 9:156. BioMed Central Full Text
  • [14]Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W: Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol 2011, 28:2637-2649.
  • [15]Klingel S, Morath I, Strietz J, Menzel K, Holstein TW, Gradl D: Subfunctionalization and neofunctionalization of vertebrate Lef/Tcf transcription factors. Dev Biol 2012, 368:44-53.
  • [16]Hoersch S, Andrade-Navarro MA: Periostin shows increased evolutionary plasticity in its alternatively spliced region. BMC Evol Biol 2010, 10:30. BioMed Central Full Text
  • [17]Zhang J, Zhang YP, Rosenberg HF: Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet 2002, 30:411-415.
  • [18]Schienman JE, Holt RA, Auerbach MR, Stewart CB: Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol 2006, 23:1465-1479.
  • [19]Bao R, Fischer T, Bolognesi R, Brown SJ, Friedrich M: Parallel duplication and partial subfunctionalization of beta-catenin/armadillo during insect evolution. Mol Biol Evol 2012, 29:647-662.
  • [20]He X, Zhang J: Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169(2):1157-1164.
  • [21]Gleixner E, Herlyn H, Zimmerling S, Burmester T, Hankeln T: Testes-specific hemoglobins in Drosophila evolved by a combination of sub- and neofunctionalization after gene duplication. BMC Evol Biol 2012, 12:34. BioMed Central Full Text
  • [22]Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV: Selection in the evolution of gene duplications. Genome Biol 2002, 3(2):RESEARCH0008.
  • [23]Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW: Adaptive evolution of young gene duplicates in mammals. Genome Res 2009, 19:859-867.
  • [24]Yampolsky LY, Bouzinier MA: Evolutionary patterns of amino acid substitutions in 12 Drosophila genomes. BMC Genomics 2010, 11:S4-S10.
  • [25]Conant GC, Wagner A: Asymmetric sequence divergence of duplicate genes. Genome Res 2003, 13(9):2052-2058.
  • [26]Kim S-H, Yi SV: Correlated asymmetry of sequence and functional divergence between duplicate proteins of Saccharomyces cerevisiae. Mol Biol Evol 2006, 23:1068-1075.
  • [27]Steinke D, Salzburger W, Braasch I, Meyer A: Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 2006, 7:20. BioMed Central Full Text
  • [28]Byrne KP, Wolfe KH: Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics 2007, 175:1341-1350.
  • [29]Leong JS, Jantzen SG, von Schalburg KR, et al.: Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics 2010, 11:279. BioMed Central Full Text
  • [30]Davis JC, Petrov DA: Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol 2004, 2:E55.
  • [31]Yang L, Gaut BS: Factors that contribute to variation in evolutionary rate among Arabidopsis genes. Mol Biol Evol 2011, 28:2359-2369.
  • [32]He X, Zhang J: Higher duplicability of less important genes in yeast genomes. Mol Biol Evol 2006, 23:144-151.
  • [33]Jordan IK, Wolf YI, Koonin EV: Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 2004, 4:22. BioMed Central Full Text
  • [34]Drosophila 12 Genomes Consortium: Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450:203-218.
  • [35]Hahn M, Han MV, Han SG: Gene family evolution across 12 Drosophila genomes. PLoS Genet 2007, 3:2135-2146.
  • [36]Durand D, Halldorsson BV, Vernot B: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 2005, 13:320-335.
  • [37]Mano S, Innan H: The evolutionary rate of duplicated genes under concerted evolution. Genetics 2008, 180:493-505.
  • [38]McQuilton P, St Pierre SE, Thurmond J, FlyBase Consortium: FlyBase 101 – the basics of navigating FlyBase. Nucleic Acids Res 2012, 40:D706-D714.
  • [39]Chintapalli VR, Wang J, Dow JA: Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 2007, 39:715-720.
  • [40]Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, et al.: The drosophila melanogaster genetic reference panel. Nature 2012, 482:173-178.
  • [41]Chain FJJ, Dushoff J, Evans BJ: The odds of duplicate gene persistence after polyploidization. BMC Genomics 2011, 12:599. BioMed Central Full Text
  • [42]Tajima F: Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 1993, 135:599-607.
  • [43]Zar J: Biostatistical Analysis. Upper Saddle River, New Jersey: Prentice Hall; 1999.
  • [44]Yampolsky LY, Stoltzfus A: The exchangeability of amino acids in proteins. Genetics 2005, 170:1459-1472.
  • [45]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29:1165-1188.
  • [46]Pál C, Papp B, Hurst LD: Highly expressed genes in yeast evolve slowly. Genetics 2001, 158:927-931.
  • [47]Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH: Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 2005, 102:14338-14343.
  • [48]Koonin EV, Wolf YI: The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biol Direct 2009, 4:33. BioMed Central Full Text
  • [49]Sugino RP, Innan H: Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet 2006, 22:642-644.
  • [50]Wang Y, Wang X, Paterson AH: Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 2011, 2012(1256):1-14.
  • [51]Rodin SN, Parkhomchuk DV, Riggs AD: Epigenetic changes and repositioning determine the evolutionary fate of duplicated genes. Biochem (Moscow) 2005, 70:559-567.
  • [52]Cusack BP, Wolfe KH: Not born equal: increased rate asymmetry in relocated and retrotransposed rodent gene duplicates. Mol Biol Evol 2007, 24:679-686.
  • [53]Clement Y, Tavares R, Marais GAB: Does lack of recombination enhance asymmetric evolution among duplicate genes? Insights from the Drosophila melanogaster genome. Gene 2006, 385:89-95.
  • [54]Kryazhimskiy S, Plotkin JB: The population genetics of dN/dS. PLoS Genet 2008, 4(12):e1000304.
  • [55]Sasidharan R, Gerstein M: Genomics - Protein fossils live on as RNA. Nature 2008, 453:729-731.
  • [56]Van Dyken JD, Wade MJ: The genetic signature of conditional expression. Genetics 2010, 184:557-570.
  • [57]Mukhamedyarov D, Makarova KS, Severinov K, Kuznedelov K: Francisella RNA polymerase contains a heterodimer of non-identical α subunits. BMC Mol Biol 2011, 12:50. BioMed Central Full Text
  文献评价指标  
  下载次数:67次 浏览次数:34次