期刊论文详细信息
Biotechnology for Biofuels
Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae
Binbin Chen1  Hua Ling1  Matthew Wook Chang1 
[1] Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
关键词: Tolerance;    Alkanes;    S. cerevisiae;    ABC transporters;    Biofuels;   
Others  :  798153
DOI  :  10.1186/1754-6834-6-21
 received in 2012-10-18, accepted in 2013-02-08,  发布年份 2013
PDF
【 摘 要 】

Background

Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes.

Results

To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism.

Conclusions

Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery.

【 授权许可】

   
2013 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102838423.pdf 1376KB PDF download
Figure 5. 153KB Image download
Figure 4. 31KB Image download
Figure 3. 74KB Image download
Figure 2. 55KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S: Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 2008, 105(3):296-299.
  • [2]Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7:36. BioMed Central Full Text
  • [3]Kalscheuer R, Luftmann H, Steinbuchel A: Synthesis of novel lipids in saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 2004, 70(12):7119-7125.
  • [4]Yu KO, Jung J, Kim SW, Park CH, Han SO: Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 2012, 109(1):110-115.
  • [5]Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J: Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 2012, 5(1):7. BioMed Central Full Text
  • [6]de Jong B, Siewers V, Nielsen J: Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 2012, 23(4):624-630.
  • [7]Gong P-F, Xu J-H: Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzyme Microb Technol 2005, 36(2–3):252-257.
  • [8]Klibanov AM: Improving enzymes by using them in organic solvents. Nature 2001, 409(6817):241-246.
  • [9]Dembitsky VM, Srebnik M: Variability of hydrocarbon and fatty acid components in cultures of the filamentous cyanobacterium scytonema sp. Isolated from microbial community “black cover” of limestone walls in Jerusalem. Biochem (Mosc) 2002, 67(11):1276-1282.
  • [10]Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB: Microbial biosynthesis of alkanes. Science 2010, 329(5991):559-562.
  • [11]Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ: Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 1999, 29(6):481-514.
  • [12]Samuels L, Kunst L, Jetter R: Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 2008, 59:683-707.
  • [13]Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai Y-L, Mo B, Zong D, Smith MD, et al.: Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synthetic Biol 2013, 2(1):59-62.
  • [14]Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire R, Joubès J: Reconstitution of Plant Alkane Biosynthesis in Yeast Demonstrates That Arabidopsis ECERIFERUM1 and ECERIFERUM3 Are Core Components of a Very-Long-Chain Alkane Synthesis Complex. Online: The Plant Cell; 2012.
  • [15]Gill CO, Ratledge C: Toxicity of n-Alkanes, n-Alk-1-enes, n-Alkan-1-ols and n-Alkyl-1-bromides towards Yeasts. J Gen Microbiol 1972, 72(1):165-172.
  • [16]Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A: Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 2002, 56:743-768.
  • [17]Inoue A, Horikoshi K: A Pseudomonas thrives in high concentrations of toluene. Nature 1989, 338(6212):264-266.
  • [18]Kawamoto T, Kanda T, Tanaka A: Preparation of an organic solvent-tolerant strain from baker's yeast. Appl Microbiol Biotechnol 2001, 55(4):476-479.
  • [19]Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G: Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314(5805):1565-1568.
  • [20]Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO: Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 2007, 108:237-261.
  • [21]Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A: Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 2011, 7:487.
  • [22]Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA: Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010, 37(2):139-149.
  • [23]Hou L: Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2010, 160(4):1084-1093.
  • [24]Kang A, Chang MW: Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol Biosyst 2012, 8(4):1350-1358.
  • [25]Teixeira M, Godinho C, Cabrito T, Mira N, Sá-Correia I: Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 2012, 11(1):1-9. BioMed Central Full Text
  • [26]Beopoulos A, Chardot T, Nicaud JM: Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 2009, 91(6):692-696.
  • [27]Barth G, Gaillardin C: Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 1997, 19(4):219-237.
  • [28]Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM: Insertional Mutagenesis in the n-Alkane-Assimilating Yeast Yarrowia lipolytica: Generation of Tagged Mutations in Genes Involved in Hydrophobic Substrate Utilization. J Bacteriol 2001, 183(17):5102-5109.
  • [29]Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM: Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 2007, 44(6):531-542.
  • [30]Thevenieau F, Beopoulos A, Desfougeres T, Sabirova J, Albertin K, Zinjarde S, Nicaud JM: Uptake and Assimilation of Hydrophobic Substrates by the Oleaginous Yeast Yarrowia lipolytica. In Handbook of Hydrocarbon and Lipid Microbiology. Edited by Kenneth N. Berlin Heidelberg: Timmis. Springer-Verlag; 2010:1513-1527.
  • [31]Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ: Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 2002, 277(24):21111-21114.
  • [32]Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L: H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 2005, 24(11):1901-1910.
  • [33]Schmitt L, Tampé R: Structure and mechanism of ABC transporters. Curr Opin Struct Biol 2002, 12(6):754-760.
  • [34]Rutledge RM, Esser L, Ma J, Xia D: Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study. J Struct Biol 2011, 173(2):333-344.
  • [35]Ernst R, Kueppers P, Klein CM, Schwarzmueller T, Kuchler K, Schmitt L: A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc Natl Acad Sci USA 2008, 105(13):5069-5074.
  • [36]Low KO, Mahadi NM, Abdul Rahim R, Rabu A, Abu Bakar FD, Abdul Murad AM, Illias RM: Enhanced secretory production of hemolysin-mediated cyclodextrin glucanotransferase in Escherichia coli by random mutagenesis of the ABC transporter system. J Biotechnol 2010, 150(4):453-459.
  • [37]Decottignies A, Owsianik G, Ghislain M: Casein Kinase I-dependent Phosphorylation and Stability of the Yeast Multidrug Transporter Pdr5p. J Biol Chem 1999, 274(52):37139-37146.
  • [38]Wada S, Niimi M, Niimi K, Holmes AR, Monk BC, Cannon RD, Uehara Y: Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 2002, 277(48):46809-46821.
  • [39]Egner R, Rosenthal FE, Kralli A, Sanglard D, Kuchler K: Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter. Mol Biol Cell 1998, 9(2):523-543.
  • [40]Heckman KL, Pease LR: Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2007, 2(4):924-932.
  • [41]Sheff MA, Thorn KS: Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 2004, 21(8):661-670.
  • [42]Blanchin-Roland S, Da Costa G, Gaillardin C: ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. Microbiology 2005, 151(Pt 11):3627-3637.
  • [43]Riezmant H, Hase T, Loon APGM, Grivell LA, Suda K, Schatz G: Import of proteins into mitochondria: a 70 kDa outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. European Mol Biol Organ J 1983, 2(12):2161-2168.
  • [44]Conzelmann A, Riezman H, Desponds C, Bron C: A major 125-kd membrane glycoprotein of Saccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid. European Mol Biol Organ J 1988, 7(7):2233-2240.
  • [45]Ramaswamy G, Karim MA, Murti KG, Jackowski S: PPARα controls the intracellular coenzyme A concentration via regulation of PANK1α gene expression. J Lipid Res 2004, 45(1):17-31.
  • [46]Oda T, Hirota K, Nishi K, Takabuchi S, Oda S, Yamada H, Arai T, Fukuda K, Kita T, Adachi T, et al.: Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 2006, 291(1):C104-C113.
  文献评价指标  
  下载次数:62次 浏览次数:24次