期刊论文详细信息
BMC Biotechnology
Efficient cellular fractionation improves RNA sequencing analysis of mature and nascent transcripts from human tissues
Ammar Zaghlool2  Adam Ameur2  Linnea Nyberg2  Jonatan Halvardson2  Manfred Grabherr1  Lucia Cavelier2  Lars Feuk2 
[1] Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
[2] Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
关键词: Transcription profiling;    De novo assembly;    Nascent transcripts;    Nuclear RNA;    Cytoplasmic RNA;    PolyA+ selection;    RNA purification;    RNA splicing;    Transcriptomics;    RNA sequencing;   
Others  :  835101
DOI  :  10.1186/1472-6750-13-99
 received in 2013-07-08, accepted in 2013-11-04,  发布年份 2013
PDF
【 摘 要 】

Background

The starting material for RNA sequencing (RNA-seq) studies is usually total RNA or polyA+ RNA. Both forms of RNA represent heterogeneous pools of RNA molecules at different levels of maturation and processing. Such heterogeneity, in addition to the biases associated with polyA+ purification steps, may influence the analysis, sensitivity and the interpretation of RNA-seq data. We hypothesize that subcellular fractions of RNA may provide a more accurate picture of gene expression.

Results

We present results for sequencing of cytoplasmic and nuclear RNA after cellular fractionation of tissue samples. In comparison with conventional polyA+ RNA, the cytoplasmic RNA contains a significantly higher fraction of exonic sequence, providing increased sensitivity in expression analysis and splice junction detection, and in improved de novo assembly of RNA-seq data. Conversely, the nuclear fraction shows an enrichment of unprocessed RNA compared with total RNA-seq, making it suitable for analysis of nascent transcripts and RNA processing dynamics.

Conclusion

Our results show that cellular fractionation is a more rapid and cost effective approach than conventional polyA+ enrichment when studying mature RNAs. Thus, RNA-seq of separated cytosolic and nuclear RNA can significantly improve the analysis of complex transcriptomes from mammalian tissues.

【 授权许可】

   
2013 Zaghlool et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715100852770.pdf 717KB PDF download
Figure 4. 86KB Image download
Figure 3. 42KB Image download
Figure 2. 75KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wang GS, Cooper TA: Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007, 8(10):749-761.
  • [2]Nilsen TW, Graveley BR: Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463(7280):457-463.
  • [3]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [4]Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008, 453(7199):1239-1243.
  • [5]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [6]Wu JQ, Du J, Rozowsky J, Zhang Z, Urban AE, Euskirchen G, Weissman S, Gerstein M, Snyder M: Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol 2008, 9(1):R3. BioMed Central Full Text
  • [7]Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, et al.: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321(5891):956-960.
  • [8]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [9]Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, Huang J, Yeo GW, Ares M Jr, Fu XD: Genome-wide analysis reveals sr protein cooperation and competition in regulated splicing. Mol Cell 2013, 50(2):223-235.
  • [10]Halvardson J, Zaghlool A, Feuk L: Exome RNA sequencing reveals rare and novel alternative transcripts. Nucleic Acids Res 2013, 41(1):e6.
  • [11]Ramskold D, Wang ET, Burge CB, Sandberg R: An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 2009, 5(12):e1000598.
  • [12]van Bakel H, Nislow C, Blencowe BJ, Hughes TR: Most “dark matter” transcripts are associated with known genes. PLoS Biol 2010, 8(5):e1000371.
  • [13]Wetterbom A, Ameur A, Feuk L, Gyllensten U, Cavelier L: Identification of novel exons and transcribed regions by chimpanzee transcriptome sequencing. Genome Biol 2010, 11(7):R78. BioMed Central Full Text
  • [14]Ameur A, Zaghlool A, Halvardson J, Wetterbom A, Gyllensten U, Cavelier L, Feuk L: Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat Struct Mol Biol 2011, 18(12):1435-1440.
  • [15]Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A: Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 2009, 26(12):2731-2744.
  • [16]Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A: Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 2010, 7(9):709-715.
  • [17]Nam DK, Lee S, Zhou G, Cao X, Wang C, Clark T, Chen J, Rowley JD, Wang SM: Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci U S A 2002, 99(9):6152-6156.
  • [18]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320(5881):1344-1349.
  • [19]Shcherbik N, Wang M, Lapik YR, Srivastava L, Pestov DG: Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep 2010, 11(2):106-111.
  • [20]Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigo R: Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012, 22(9):1616-1625.
  • [21]Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008, 322(5909):1845-1848.
  • [22]Churchman LS, Weissman JS: Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011, 469(7330):368-373.
  • [23]Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM, Natoli G, Black DL, Smale ST: Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 2012, 150(2):279-290.
  • [24]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12(6):996-1006.
  • [25]Brody Y, Neufeld N, Bieberstein N, Causse SZ, Bohnlein EM, Neugebauer KM, Darzacq X, Shav-Tal Y: The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 2011, 9(1):e1000573.
  • [26]Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C, et al.: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011, 14(4):459-468.
  • [27]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [28]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [29]Carrillo Oesterreich F, Preibisch S, Neugebauer KM: Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 2010, 40(4):571-581.
  • [30]Windhager L, Bonfert T, Burger K, Ruzsics Z, Krebs S, Kaufmann S, Malterer G, L’Hernault A, Schilhabel M, Schreiber S, et al.: Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res 2012, 22(10):2031-2042.
  • [31]Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ, Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 2010, 5(5):e10563.
  • [32]Tariq MA, Kim HJ, Jejelowo O, Pourmand N: Whole-transcriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res 2011, 39(18):e120.
  • [33]Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, Geng J, Zhang B, Yu X, Yang J, et al.: A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 2010, 96(5):259-265.
  • [34]Zhang Q, Chen CY, Yedavalli VS, Jeang KT: NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 2013, 4(1):00596-00512.
  • [35]Rouquette J, Choesmel V, Gleizes PE: Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J 2005, 24(16):2862-2872.
  • [36]Jeffries CD, Fried HM, Perkins DO: Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 2011, 17(4):675-686.
  • [37]Hillier LW, Reinke V, Green P, Hirst M, Marra MA, Waterston RH: Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res 2009, 19(4):657-666.
  • [38]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [39]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-842.
  • [40]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
  文献评价指标  
  下载次数:55次 浏览次数:32次