| BMC Biotechnology | |
| A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis | |
| Edwin van Bloois2  Hanna M Dudek1  Wouter A Duetz2  Marco W Fraaije1  | |
| [1] Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands | |
| [2] Enzyscreen BV, Tingietersweg 127, 2031 ER, Haarlem, The Netherlands | |
| 关键词: Screening; Square deep-well microtiter plates; Biocatalysis; Escherichia coli; Baeyer-Villiger monoxygenase; | |
| Others : 1135121 DOI : 10.1186/1472-6750-12-31 |
|
| received in 2012-02-07, accepted in 2012-06-21, 发布年份 2012 | |
【 摘 要 】
Background
Baeyer-Villiger monooxygenases (BVMOs) represent a group of enzymes of considerable biotechnological relevance as illustrated by their growing use as biocatalyst in a variety of synthetic applications. However, due to their increased use the reproducible expression of BVMOs and other biotechnologically relevant enzymes has become a pressing matter while knowledge about the factors governing their reproducible expression is scattered.
Results
Here, we have used phenylacetone monooxygenase (PAMO) from Thermobifida fusca, a prototype Type I BVMO, as a model enzyme to develop a stepwise strategy to optimize the biotransformation performance of recombinant E. coli expressing PAMO in 96-well microtiter plates in a reproducible fashion. Using this system, the best expression conditions of PAMO were investigated first, including different host strains, temperature as well as time and induction period for PAMO expression. This optimized system was used next to improve biotransformation conditions, the PAMO-catalyzed conversion of phenylacetone, by evaluating the best electron donor, substrate concentration, and the temperature and length of biotransformation. Combining all optimized parameters resulted in a more than four-fold enhancement of the biocatalytic performance and, importantly, this was highly reproducible as indicated by the relative standard deviation of 1% for non-washed cells and 3% for washed cells. Furthermore, the optimized procedure was successfully adapted for activity-based mutant screening.
Conclusions
Our optimized procedure, which provides a comprehensive overview of the key factors influencing the reproducible expression and performance of a biocatalyst, is expected to form a rational basis for the optimization of miniaturized biotransformations and for the design of novel activity-based screening procedures suitable for BVMOs and other NAD(P)H-dependent enzymes as well.
【 授权许可】
2012 van Bloois et al.; licensee BioMed Central Ltd.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 4. | 21KB | Image | |
| Figure 3. | 39KB | Image | |
| Figure 2. | 35KB | Image | |
| Figure 1. | 59KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]de Gonzalo G, Mihovilovic MD, Fraaije MW: Recent Developments in the Application of Baeyer-Villiger Monooxygenases as Biocatalysts. ChemBioChem 2010, 11(16):2208-2231.
- [2]Willetts A: Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 1997, 15(2):55-62.
- [3]Torres Pazmino DE, Dudek HM, Fraaije MW: Baeyer-Villiger monooxygenases: recent advances and future challenges. Curr Opin Chem Biol 2010, 14(2):138-144.
- [4]Kamerbeek NM, Janssen DB, van Berkel WJH, Fraaije MW: Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv Synth Catal 2003, 345(6–7):667-678.
- [5]Fraaije MW, Wu J, Heuts DP, van Hellemond EW, Spelberg JH, Janssen DB: Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 2005, 66(4):393-400.
- [6]de Gonzalo G, Pazmino DET, Ottolina G, Fraaije MW, Carrea G: Oxidations catalyzed by phenylacetone monooxygenase from Thermobifida fusca. Tetrahedron-Asymmetr 2005, 16(18):3077-3083.
- [7]Rodriguez C, de Gonzalo G, Fraaije MW, Gotor V: Enzymatic kinetic resolution of racemic ketones catalyzed by Baeyer-Villiger monooxygenases. Tetrahedron-Asymmetr 2007, 18(11):1338-1344.
- [8]Rodriguez C, de Gonzalo G, Pazmino DET, Fraaije MW, Gotor V: Baeyer-Villiger monooxygenase-catalyzed kinetic resolution of racemic alpha-alkyl benzyl ketones: enzymatic synthesis of alpha-alkyl benzylketones and alpha-alkyl benzylesters. Tetrahedron-Asymmetr 2009, 20(10):1168-1173.
- [9]Secundo F, Fiala S, Fraaije MW, de Gonzalo G, Meli M, Zambianchi F, Ottolina G: Effects of Water Miscible Organic Solvents on the Activity and Conformation of the Baeyer-Villiger Monooxygenases From Thermobifida fusca and Acinetobacter calcoaceticus: A Comparative Study. Biotechnol Bioeng 2011, 108(3):491-499.
- [10]de Gonzalo G, Ottolina G, Zambianchi F, Fraaije MW, Carrea G: Biocatalytic properties of Baeyer-Villiger monooxygenases in aqueous-organic media. J Mol Catal B-Enzym 2006, 39(1–4):91-97.
- [11]Malito E, Alfieri A, Fraaije MW, Mattevi A: Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci U S A 2004, 101(36):13157-13162.
- [12]Orru R, Dudek HM, Martinoli C, Torres Pazmino DE, Royant A, Weik M, Fraaije MW, Mattevi A: Snapshots of Enzymatic Baeyer-Villiger Catalysis: oxygen activation and intermediate stabilization. J Bio Chem 2011, 286(33):29284-29291.
- [13]Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM: Recombinant baker's yeast as a whole-cell catalyst for asymmetric Baeyer-Villiger oxidations. J Am Chem Soc 1998, 120(15):3541-3548.
- [14]Kayser MM, Chen G, Mihovilovic MD, Mrstik ME, Martinez CA, Stewart JD: Asymmetric oxidations at sulfur catalyzed by engineered strains that overexpress cyclohexanone monooxygenase. New J Chem 1999, 23(8):827-832.
- [15]Woodley JM, Doig SD, Simpson H, Alphand V, Furstoss R: Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzyme Microb Tech 2003, 32(3–4):347-355.
- [16]Mihovilovic MD, Chen G, Wang S, Kyte B, Rochon F, Kayser MM, Stewart JD: Asymmetric Baeyer-Villiger oxidations of 4-mono- and 4,4-disubstituted cyclohexanones by whole cells of engineered Escherichia coli. J Org Chem 2001, 66(3):733-738.
- [17]Doig SD, O'Sullivan LM, Patel S, Ward JM, Woodley JM: Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb Technol 2001, 28(2–3):265-274.
- [18]Doig SD, Pickering SC, Lye GJ, Woodley JM: The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics. Biotechnol Bioeng 2002, 80(1):42-49.
- [19]Doig SD, Avenell PJ, Bird PA, Gallati P, Lander KS, Lye GJ, Wohlgemuth R, Woodley JM: Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol Prog 2002, 18(5):1039-1046.
- [20]Walton AZ, Stewart JD: Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 2004, 20(2):403-411.
- [21]Walton AZ, Stewart JD: An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 2002, 18(2):262-268.
- [22]Ferreira-Torres C, Micheletti M, Lye GJ: Microscale process evaluation of recombinant biocatalyst libraries: application to Baeyer-Villiger monooxygenase catalysed lactone synthesis. Bioprocess Biosyst Eng 2005, 28(2):83-93.
- [23]Baldwin CV, Woodley JM: On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol Bioeng 2006, 95(3):362-369.
- [24]Lee WH, Park JB, Park K, Kim MD, Seo JH: Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 2007, 76(2):329-338.
- [25]Francis DM, Page R: Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 2010, Chapter 5(Unit 5 24):21-29.
- [26]Dudek HM, de Gonzalo G, Torres Pazmino DE, Stepniak P, Wyrwicz LS, Rychlewski L, Fraaije MW: Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis. Appl Environ Microbiol 2011, 77(16):5730-5738.
- [27]Torres Pazmino DE, Snajdrova R, Rial DV, Mihovilovic MD, Fraaije MW: Altering the substrate specificity and enantioselectivity of phenylacetone monooxygenase by structure-inspired enzyme redesign. Adv Synth Catal 2007, 349(8–9):1361-1368.
- [28]Duetz WA: Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 2007, 15(10):469-475.
- [29]Samuelson JC: Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol 2011, 705:195-209.
- [30]Galloway CA, Sowden MP, Smith HC: Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques 2003, 34(3):524-526. 528, 530
- [31]Ou J, Wang L, Ding X, Du J, Zhang Y, Chen H, Xu A: Stationary phase protein overproduction is a fundamental capability of Escherichia coli. Biochem Biophys Res Commun 2004, 314(1):174-180.
- [32]Chou CP: Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007, 76(3):521-532.
- [33]Yoshikane Y, Yokochi N, Ohnishi K, Yagi T: Coenzyme precursor-assisted cooperative overexpression of an active pyridoxine 4-oxidase from Microbacterium luteolum. Protein Expr Purif 2004, 34(2):243-248.
- [34]Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW: Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases. ChemBioChem 2009, 10(16):2595-2598.
- [35]Torres Pazmino DE, Snajdrova R, Baas BJ, Ghobrial M, Mihovilovic MD, Fraaije MW: Self-sufficient Baeyer-Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. Angew Chem Int Ed Engl 2008, 47(12):2275-2278.
- [36]Lee SH, Nam DH, Park CB: Screening Xanthene Dyes for Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photoenzymatic Synthesis. Adv Synth Catal 2009, 351(16):2589-2594.
- [37]Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT: Light-driven biocatalytic oxidation and reduction reactions: Scope and limitations. ChemBioChem 2008, 9(4):565-572.
- [38]Buhler B, Park JB, Blank LM, Schmid A: NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 2008, 74(5):1436-1446.
- [39]Daniel RM, Danson MJ: A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochemical Sci 2010, 35(10):584-591.
- [40]Chen RR: Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 2007, 74(4):730-738.
- [41]Rioz-Martinez A, de Gonzalo G, Pazmino DET, Fraaije MW, Gotor V: Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones: Formation of Regiocomplementary Lactones. Eur J Org Chem 2009, 15:2526-2532.
- [42]Reetz MT, Wu S: Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis. J Am Chem Soc 2009, 131(42):15424-15432.
- [43]Baneyx F, Mujacic M: Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004, 22(11):1399-1408.
- [44]Casadaban MJ, Cohen SN: Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980, 138(2):179-207.
- [45]Studier FW, Moffatt BA: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986, 189(1):113-130.
- [46]Hua Q, Araki M, Koide Y, Shimizu K: Effects of glucose, vitamins, and DO concentrations on pyruvate fermentation using Torulopsis glabrata IFO 0005 with metabolic flux analysis. Biotechnol Prog 2001, 17(1):62-68.
- [47]Gu JS, Wang YX, Jiao Q: Biocatalyst preparation from Pseudomonas putida SM-6 for conversion of DL-lactate to pyruvate. Biochem Eng J 2005, 22(2):89-96.