期刊论文详细信息
Sustainable Chemical Processes
High performance green barriers based on nanocellulose
Arthur J Ragauskas3  Yulin Deng1  JY Zhu4  Sandeep S Nair2 
[1]School of Chemical and Biomolecular Engineering, Georgia Institute of Technology 500 10th Street, N.W, Atlanta 30332, GA, USA
[2]School of Chemistry and Biochemistry, Georgia Institute of Technology, 500 10th Street, N.W, Atlanta 30332, GA, USA
[3]Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville 37996-2200, TN, USA
[4]USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison 53726, WI, USA
关键词: Cellulose nanocrystals;    Cellulose nanofibrils;    Nanocellulose;    Green barriers;   
Others  :  1216789
DOI  :  10.1186/s40508-014-0023-0
 received in 2014-07-14, accepted in 2014-10-24,  发布年份 2014
PDF
【 摘 要 】

With the increasing environmental concerns such as sustainability and end-of-life disposal challenges, materials derived from renewable resources such as nanocellulose have been strongly advocated as potential replacements for packaging materials. Nanocellulose can be extracted from various plant resources through mechanical and chemical ways. Nanocellulose with its nanoscale dimensions, high crystalline nature, and the ability to form hydrogen bonds resulting in strong network makes it very hard for the molecules to pass through, suggesting excellent barrier properties associated with films made from these material. This review paper aim to summarize the recent developments in various barrier films based on nanocellulose with special focus on oxygen and water vapor barrier properties.

【 授权许可】

   
2014 Nair et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150703010458443.pdf 473KB PDF download
Figure 2. 34KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A: Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 2011, 3:4024-4031.
  • [2]Hansen NML, Plackett D: Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 2008, 9:1493-1505.
  • [3]Priolo MA, Gamboa D, Holder KM, Grunlan JC: Super gas barrier of transparent polymer???clay multilayer ultrathin films. Nano Lett 2010, 10:4970-4974.
  • [4]Reis AB, Yoshida CMP, Reis APC, Franco TT: Application of chitosan emulsion as a coating on Kraft paper. Polym Int 2011, 60:963-969.
  • [5]Rodionova G, Lenes M, Eriksen O, Gregersen O: Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 2011, 18:127-134.
  • [6]Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA: Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources 2011, 6:4370-4388.
  • [7][http:/ / www.ey.com/ Publication/ vwLUAssets/ Unwrapping_the_packaging_industry_% E2%80%93_seven_factors_for_success/ $FILE/ EY_Unwrapping_the_packaging_industr y_-_seven_success_factors.pdf] webcite Neil-Boss N, Brooks K: Unwrapping the packaging industry: seven factors for success. 2013. .
  • [8]Nair SS, Wang SQ, Hurley DC: Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy. Compos Part A 2010, 41:624-631.
  • [9]Hyden WL: Manufacture and properties of regenerated cellulose films. Ind Eng Chem 1929, 21:405-410.
  • [10]Stelte W, Sanadi AR: Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 2009, 48:11211-11219.
  • [11]Nair SS, Zhu JY, Deng Y, Ragauskas AJ: Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustainable Chem Eng 2014, 2:772-780.
  • [12]Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY: Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 2013, 20:807-818.
  • [13]Syverud K, Stenius P: Strength and barrier properties of MFC films. Cellulose 2009, 16:75-85.
  • [14]Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R: Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym 2011, 86:1468-1475.
  • [15]Kaushik A, Singh M: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 2011, 346:76-85.
  • [16]He L, Li X, Li W, Yuan J, Zhou H: A method for determining reactive hydroxyl groups in natural fibers:application to ramie fiber and its modification. Carbohydr Res 2012, 348:95-98.
  • [17]Uetani K, Yano H: Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 2011, 12:348-353.
  • [18]Chinga-Carrasco G, Syverud K: On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 2012, 7:192. BioMed Central Full Text
  • [19]Chinga-Carrasco G, Kuznetsova N, Garaeva M, Leirset I, Galiullina G, Kostochko A, Syverud K: Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane. J Nanopart Res 2012, 14:1280.
  • [20]Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T: Cellulose nanopaper structures of high toughness. Biomacromolecules 2008, 9:1579-1585.
  • [21]Nair SS, Zhu JY, Deng Y, Ragauskas AJ: Charaterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 2014, 16:2349.
  • [22]Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE: Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 2012, 19:1631-1643.
  • [23]Saxena A, Elder TJ, Kenvin J, Ragauskas AJ: High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Lett 2010, 2:235-241.
  • [24]Wang QQ, Zhu JY, Reiner RS, Verril SP, Baxa U, Mc Neil SE: Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 2012, 19:2033-2047.
  • [25]Beck-Candanedo S, Roman M, Gray DG: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2006, 6:1048-1054.
  • [26]Saito T, Kimura S, Nishiyama Y, Isogai A: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8:2485-2491.
  • [27]Aulin C, Gallstedt M, Lindstrom T: Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 2010, 17:559-574.
  • [28]Henriksson M, Henriksson G, Berglund LA, Lindström T: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 2007, 43:3434-3441.
  • [29]Hayashi N, Kondo T, Ishihara M: Enzymatically produced nano-ordered short elements containing cellulose I-beta crystalline domains. Carbohydr Polym 2005, 61:191-197.
  • [30]Zhu JY, Sabo R, Luo XL: Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 2011, 13:1339-1344.
  • [31]Lagaron JM, Catala R, Gavara R: Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 2004, 20:1-7.
  • [32]Guo J, Catchmark JM: Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 2012, 87:1026-1037.
  • [33]Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A: Water sorption behaviour and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 2011, 83:1740-1748.
  • [34]Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ: The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 2010, 17:835-848.
  • [35]Saito T, Isogai A: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water- insoluble fractions. Biomacromolecules 2004, 5:1983-1989.
  • [36]Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J: A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 2013, 5:4640-4647.
  • [37]Sharma S, Zhang X, Nair SS, Ragauskas AJ, Zhu JY, Deng Y: Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 2014, 4:45136-45142.
  • [38]Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 2009, 10:162-165.
  • [39]Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A: Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 2012, 19:705-711.
  • [40]Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A: Preparation and characterization of TEMPO-oxidized cellulose nanofibrils films with free carboxyl groups. Carbohydr Polym 2011, 84:579-583.
  • [41]Hult EL, Lotti M, Lenes M: Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 2010, 17:575-586.
  • [42]Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gallstedt M, Lindstrom T, Siro I: Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 2010, 117:3601-3609.
  • [43]Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV: Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 2012, 19:2015-2031.
  • [44]Aulin C, Salazar-Alvarez G, Lindstrom T: High strength, flexible and transparent nanofibrillated cellulose ¿ nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 2012, 4:6622-6628.
  • [45]Liimatainen H, Ezekiel N, Sliz R, Ohenoja K, Sirvio JA, Berglund L, Hormi O, Niinimaki J: High-strength nanocellulose ¿ talc hybrid barrier films. ACS Appl Mater Interfaces 2013, 5:13412-13418.
  • [46]Wu J, Yuan Q: Gas permeability of a novel cellulose membrane. J Membr Sci 2002, 204:185-194.
  • [47]Lange J, Wyser Y: Recent innovations in barrier technologies for plastic packaging¿a review. Packag Technol Sci 2003, 16:149-158.
  • [48]Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindstrom T, Siro I, Plackett D: Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 2010, 358:67-75.
  • [49]Aulin C, Strom G: Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 2013, 52:2582-2589.
  • [50]Steven MD, Hotchkiss JH: Comparison of flat film to total package water vapor transmission rates for several commercial food wraps. Packag Technol Sci 2002, 15:17-27.
  • [51]Martinez-Sanz M, Lopez-Rubio A, Lagaron JM: High-barrier coated bacterial cellulose nanowhiskers with reduced moisture sensitivity. Carbohydr Polym 2013, 98:1072-1082.
  • [52]Herrera MA, Mathew AP, Oksman K: Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 2014, 112:494-501.
  • [53]Fortunati E, Peltzer M, Armentano I, Torre L, Jimenez A, Kenny JM: Effects of modified cellulose nanocrystals on the barrier and migration of PLA nano-composites. Carbohydr Polym 2012, 90:948-956.
  • [54]Fortunati E, Peltzer M, Armentano I, Jimenez A, Kenny JM: Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 2013, 118:117-124.
  • [55]Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM: PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 2014, 107:139-149.
  • [56]Pereira ALS, do Nascimento DM, Souza Filho MM, Morais JPS, Vasconcelos NF, Feitosa JPA, Brigida AIS, Rosa MF: Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 2014, 112:165-172.
  • [57]Saxena A, Ragauskas AJ: Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydr Polym 2009, 78:357-360.
  • [58]Saxena A, Elder TJ, Ragauskas AJ: Moisture barrier properties of xylan composite films. Carbohydr Polym 2011, 84:1371-1377.
  • [59]Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M: Production and properties of nanocellulose-reinforced methycellulose-based biodegradable films. J Agric Food Chem 2010, 58:7878-7885.
  文献评价指标  
  下载次数:36次 浏览次数:21次