期刊论文详细信息
BMC Biotechnology
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis
Verena Lohr2  Oliver Hädicke1  Yvonne Genzel1  Ingo Jordan2  Heino Büntemeyer4  Steffen Klamt1  Udo Reichl3 
[1] Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
[2] Current address: ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany
[3] Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
[4] Cell Culture Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
关键词: Glutaminolysis;    Metabolic network modeling;    Flux variability analysis;    Biomass composition;    Avian cell line AGE1.CR.pIX;   
Others  :  1084827
DOI  :  10.1186/1472-6750-14-72
 received in 2013-10-31, accepted in 2014-07-16,  发布年份 2014
PDF
【 摘 要 】

Background

In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation.

Results

To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected.

Conclusions

A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes.

【 授权许可】

   
2014 Lohr et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164627741.pdf 1063KB PDF download
Figure 3. 51KB Image download
Figure 2. 53KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Butler M: Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 2006, 50(1–3):57-76.
  • [2]Lim Y, Wong NS, Lee YY, Ku SC, Wong DC, Yap MG: Engineering mammalian cells in bioprocessing - current achievements and future perspectives. Biotechnol Appl Biochem 2010, 55(4):175-189.
  • [3]Blanchard TJ, Alcami A, Andrea P, Smith GL: Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 1998, 79(Pt 5):1159-1167.
  • [4]Draper SJ, Heeney JL: Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 2010, 8(1):62-73.
  • [5]Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V: An avian cell line designed for production of highly attenuated viruses. Vaccine 2009, 27(5):748-756.
  • [6]Lohr V, Rath A, Genzel Y, Jordan I, Sandig V, Reichl U: New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 2009, 27(36):4975-4982.
  • [7]Nadeau I, Sabatie J, Koehl M, Perrier M, Kamen A: Human 293 cell metabolism in low glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis. Metab Eng 2000, 2(4):277-292.
  • [8]Nadeau I, Jacob D, Perrier M, Kamen A: 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol Prog 2000, 16(5):872-884.
  • [9]Niklas J, Schrader E, Sandig V, Noll T, Heinzle E: Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess Biosyst Eng 2011, 34(5):533-545.
  • [10]Priesnitz C, Niklas J, Rose T, Sandig V, Heinzle E: Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the alpha1-antitrypsin producing human AGE1.HN cell line. Metab Eng 2012, 14(2):128-137.
  • [11]Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C: Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 2001, 17(6):1032-1041.
  • [12]Teixeira A, Cunha AE, Clemente JJ, Moreira JL, Cruz HJ, Alves PM, Carrondo MJ, Oliveira R: Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems. J Biotechnol 2005, 118(3):290-303.
  • [13]Sidorenko Y, Wahl A, Dauner M, Genzel Y, Reichl U: Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media. Biotechnol Prog 2008, 24(2):311-320.
  • [14]Wahl A, Sidorenko Y, Dauner M, Genzel Y, Reichl U: Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution. Biotechnol Bioeng 2008, 101(1):135-152.
  • [15]Bonarius HP, Houtman JH, Schmid G, de Gooijer CD, Tramper J: Metabolic-flux analysis of hybridoma cells under oxidative and reductive stress using mass balances. Cytotechnology 2000, 32(2):97-107.
  • [16]Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J: Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 1996, 50(3):299-318.
  • [17]Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM: Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 2009, 104(1):162-180.
  • [18]Carinhas N, Bernal V, Yokomizo AY, Carrondo MJ, Oliveira R, Alves PM: Baculovirus production for gene therapy: the role of cell density, multiplicity of infection and medium exchange. Appl Microbiol Biotechnol 2009, 81(6):1041-1049.
  • [19]Kovacevic Z, Brkljac O, Bajin K: Control and function of the transamination pathways of glutamine oxidation in tumour cells. Biochem J 1991, 273(Pt 2):271-275.
  • [20]Moreadith RW, Lehninger AL: The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 1984, 259(10):6215-6221.
  • [21]Reitzer LJ, Wice BM, Kennell D: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 1979, 254(8):2669-2676.
  • [22]Glacken MW, Fleischaker RJ, Sinskey AJ: Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 1986, 28(9):1376-1389.
  • [23]Miller WM, Blanch HW, Wilke CR: A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 1988, 32(8):947-965.
  • [24]Boghigian BA, Seth G, Kiss R, Pfeifer BA: Metabolic flux analysis and pharmaceutical production. Metab Eng 2010, 12(2):81-95.
  • [25]Quek LE, Dietmair S, Kromer JO, Nielsen LK: Metabolic flux analysis in mammalian cell culture. Metab Eng 2010, 12(2):161-171.
  • [26]Ahn WS, Antoniewicz MR: Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 2011, 13(5):598-609.
  • [27]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5(4):264-276.
  • [28]Klamt S, Saez-Rodriguez J, Gilles ED: Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 2007, 1:2.
  • [29]Xie L, Wang DI: Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology 1994, 15(1–3):17-29.
  • [30]Zupke C, Stephanopoulos G: Intracellular flux analysis in hybridomas using mass balances and in vitro (13)C nmr. Biotechnol Bioeng 1995, 45(4):292-303.
  • [31]Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J: Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Fact 2009, 8:65.
  • [32]Selvarasu S, Ho YS, Chong WP, Wong NS, Yusufi FN, Lee YY, Yap MG, Lee DY: Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 2012, 109(6):1415-1429.
  • [33]Ferrance JP, Goel A, Ataai MM: Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within the primary pathways and medium development. Biotechnol Bioeng 1993, 42(6):697-707.
  • [34]Xie L, Wang DI: Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng 1994, 43(11):1175-1189.
  • [35]Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl U: Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnol 2012, 12:79.
  • [36]Niklas J, Priesnitz C, Rose T, Sandig V, Heinzle E: Primary metabolism in the new human cell line AGE1.HN at various substrate levels: increased metabolic efficiency and alpha1-antitrypsin production at reduced pyruvate load. Appl Microbiol Biotechnol 2012, 93(4):1637-1650.
  • [37]Schneider M, Marison IW, von Stockar U: The importance of ammonia in mammalian cell culture. J Biotechnol 1996, 46(3):161-185.
  • [38]Yang M, Butler M: Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 2000, 16(5):751-759.
  • [39]Slivac I, Blajic V, Radosevic K, Kniewald Z, Gaurina Srcek V: Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth. Cytotechnology 2010, 62(6):585-594.
  • [40]Stevens L: Avian Biochemistry and Molecular Biology. Cambridge: Cambridge University Press; 1996.
  • [41]Fitzpatrick L, Jenkins HA, Butler M: Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture. Appl Biochem Biotechnol 1993, 43(2):93-116.
  • [42]Neermann J, Wagner R: Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 1996, 166(1):152-169.
  • [43]Xie L, Wang DI: Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network. Biotechnol Bioeng 1996, 52(5):591-601.
  • [44]Zamorano F, Wouwer AV, Bastin G: A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 2010, 150(4):497-508.
  • [45]Janke R, Genzel Y, Handel N, Wahl A, Reichl U: Metabolic adaptation of MDCK cells to different growth conditions: effects on catalytic activities of central metabolic enzymes. Biotechnology and bioengineering 2011, 108(11):2691-2704.
  • [46]Janke R, Genzel Y, Wahl A, Reichl U: Measurement of key enzyme activities in mammalian cell lines using rapid and sensitive microplate-based assays. Biotechnol Bioeng 2010, 107(3):566-81.
  • [47]Taschwer M, Hackl M, Hernandez Bort JA, Leitner C, Kumar N, Puc U, Grass J, Papst M, Kunert R, Altmann F, Borth N: Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth. J Biotechnol 2012, 157(2):295-303.
  • [48]Capiaumont J, Legrand C, Carbonell D, Dousset B, Belleville F, Nabet P: Methods for reducing the ammonia in hybridoma cell cultures. J Biotechnol 1995, 39(1):49-58.
  • [49]Hassell T, Gleave S, Butler M: Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 1991, 30(1):29-41.
  • [50]Fuchs BC, Bode BP: Stressing out over survival: glutamine as an apoptotic modulator. J Surg Res 2006, 131(1):26-40.
  • [51]Niederlechner S, Klawitter J, Baird C, Kallweit AR, Christians U, Wischmeyer PE: Fibronectin-integrin signaling is required for L-glutamine’s protection against gut injury. PLoS One 2012, 7(11):e50185.
  • [52]Chen P, Harcum SW: Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 2005, 117(3):277-286.
  • [53]Genzel Y, Ritter JB, König S, Alt R, Reichl U: Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 2005, 21(1):58-69.
  • [54]Buentemeyer H: Methods for off-line analysis of nutrients and products in mammalian cell culture. In Methods in Biotechnology. Volume 24. 2nd edition. Edited by Poertner R. New York: Humana Press Inc; 2007:253-268.
  • [55]Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering - Principles and Methodologies. Orlando: Academic Press; 1998.
  • [56]Ozturk SS, Palsson BO: Chemical decomposition of glutamine in cell culture media: effect of media type, pH, and serum concentration. Biotechnol Prog 1990, 6(2):121-128.
  • [57]van der Heijden RT, Heijnen JJ, Hellinga C, Romein B, Luyben KC: Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates. Biotechnol Bioeng 1994, 43(1):3-10.
  • [58]Klamt S, Schuster S, Gilles ED: Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng 2002, 77(7):734-751.
  • [59]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 28(3):245-248.
  • [60]Llaneras F, Pico J: An interval approach for dealing with flux distributions and elementary modes activity patterns. J Theor Biol 2007, 246(2):290-308.
  • [61]Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW: Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 1994, 44(5):563-585.
  文献评价指标  
  下载次数:13次 浏览次数:10次