| Biotechnology for Biofuels | |
| Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass | |
| Chenlin Li2  Deepti Tanjore2  Wei He2  Jessica Wong2  James L Gardner2  Kenneth L Sale1  Blake A Simmons1  Seema Singh1  | |
| [1] Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA, USA | |
| [2] Advanced Biofuels Process Demonstration Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA | |
| 关键词: Inhibition; Viscosity; High solid loading; Ionic liquid; Saccharification; Pretreatment; Scale-up; | |
| Others : 797771 DOI : 10.1186/1754-6834-6-154 |
|
| received in 2013-05-20, accepted in 2013-10-07, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involves challenges, such as high solids loading, biomass handling and transfer, washing of pretreated solids and formation of inhibitors, which are not addressed during the development stages at the small scale in a laboratory environment. As a first in the research community, the Joint BioEnergy Institute, in collaboration with the Advanced Biofuels Process Demonstration Unit, a Department of Energy funded facility that supports academic and industrial entities in scaling their novel biofuels enabling technologies, have performed benchmark studies to identify key challenges associated with IL pretreatment using 1-ethyl-3-methylimidazolium acetate and subsequent enzymatic saccharification beyond bench scale.
Results
Using switchgrass as the model feedstock, we have successfully executed 600-fold, relative to the bench scale (6 L vs 0.01 L), scale-up of IL pretreatment at 15% (w/w) biomass loading. Results show that IL pretreatment at 15% biomass generates a product containing 87.5% of glucan, 42.6% of xylan and only 22.8% of lignin relative to the starting material. The pretreated biomass is efficiently converted into monosaccharides during subsequent enzymatic hydrolysis at 10% loading over a 150-fold scale of operations (1.5 L vs 0.01 L) with 99.8% fermentable sugar conversion. The yield of glucose and xylose in the liquid streams were 94.8% and 62.2%, respectively, and the hydrolysate generated contains high titers of fermentable sugars (62.1 g/L of glucose and 5.4 g/L cellobiose). The overall glucan and xylan balance from pretreatment and saccharification were 95.0% and 77.1%, respectively. Enzymatic inhibition by [C2mim][OAc] at high solids loadings requires further process optimization to obtain higher yields of fermentable sugars.
Conclusion
Results from this initial scale up evaluation indicate that the IL-based conversion technology can be effectively scaled to larger operations and the current study establishes the first scaling parameters for this conversion pathway but several issues must be addressed before a commercially viable technology can be realized, most notably reduction in water consumption and efficient IL recycle.
【 授权许可】
2013 Li et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706080903317.pdf | 2109KB | ||
| Figure 7. | 84KB | Image | |
| Figure 6. | 42KB | Image | |
| Figure 5. | 46KB | Image | |
| Figure 4. | 38KB | Image | |
| Figure 3. | 31KB | Image | |
| Figure 2. | 148KB | Image | |
| Figure 1. | 174KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Johnson JM, Coleman MD, Gresch R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW: Biomass-bioenergy crops in the united states: a changing paradigm. Am J Plant Sci Biotechnol 2007, 1(1):1-28.
- [2]Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 2010, 101(13):4851-4861.
- [3]Banerjee G, Car S, Liu TJ, Williams DL, Meza SL, Walton JD, Hodge DB: Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 2012, 109(4):922-931.
- [4]Modenbach AA, Nokes SE: The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 2012, 109(6):1430-1442.
- [5]Yang B, Dai Z, Ding S-Y, Wyman CE: Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2(4):421-450.
- [6]Dadi AP, Varanasi S, Schall CA: Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 2006, 95(5):904-910.
- [7]Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 2010, 101(13):4900-4906.
- [8]Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104(1):68-75.
- [9]Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD: Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 2009, 11(5):646-655.
- [10]Lee SH, Doherty TV, Linhardt RJ, Dordick JS: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 2009, 102(5):1368-1376.
- [11]Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, Sousa L, Melnichenko YB, Dale BE, Simmons BA, et al.: Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 2011, 102(13):6928-6936.
- [12]Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL: Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 2009, 11(3):339-345.
- [13]Sun L, Li C, Xue Z, Simmons BA, Singh S: Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Adv 2013, 3(6):2017-2027.
- [14]Cheng G, Varanasi P, Li CL, Liu HB, Menichenko YB, Simmons BA, Kent MS, Singh S: Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 2011, 12(4):933-941.
- [15]Arora R, Manisseri C, Li C, Ong M, Scheller HV, Vogel K, Simmons BA, Singh S: Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). BioEnergy Research 2010, 3:134-145.
- [16]Li C, Sun L, Simmons B, Singh S: Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments. BioEnergy Research 2013, 6(1):14-23.
- [17]Shi J, Thompson VS, Yancey NA, Stavila V, Simmons BA, Singh S: Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels 2013, 4(1):63-72.
- [18]Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS: Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 2011, 108(12):2865-2875.
- [19]Di Risio S, Hu CS, Saville BA, Liao D, Lortie J: Large-scale, high-solids enzymatic hydrolysis of steam-exploded poplar. Biofuels Bioprod Biorefin 2011, 5(6):609-620.
- [20]Dibble DC, Li CL, Sun L, George A, Cheng ARL, Cetinkol OP, Benke P, Holmes BM, Singh S, Simmons BA: A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 2011, 13(11):3255-3264.
- [21]Fu D, Mazza G: Aqueous ionic liquid pretreatment of straw. Bioresour Technol 2011, 102(13):7008-7011.
- [22]Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li C, Singh S, Sale KL, Adams PD, Keasling JD, et al.: Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 2011, 13(10):2743-2749.
- [23]Kim Y, Ximenes E, Mosier NS, Ladisch MR: Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 2011, 48(4–5):408-415.
- [24]Qi BK, Chen XR, Wan YH: Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresour Technol 2010, 101(13):4875-4883.
- [25]Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D'Haeseleer P, Sun N, Sale KL, et al.: A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. Plos One 2012, 7(5):e37010.
- [26]Shi J, Gladden J, Sathitsuksanoh N, Kambam P, Sandavol L, Mitra D, Zhang S, Singer S, George A, Simmons B, et al.: One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 2013.
- [27]Fu DB, Mazza G: Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresour Technol 2011, 102(17):8003-8010.
- [28]Cruz A, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang Y-D, Simmons B, et al.: Impact of high biomass loading on ionic liquid pretreatment. Biotechnology for Biofuels 2013, 6(1):52. BioMed Central Full Text
- [29]Sathitsuksanoh N, Zhu ZG, Wi S, Zhang YHP: Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnol Bioeng 2011, 108(3):521-529.
- [30]Aaltonen O, Jauhiainen O: The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 2009, 75(1):125-129.
- [31]Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz TO: Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 2009, 48(9):1005-1015.
- [32]Wiman M, Palmqvist B, Tornberg E, Liden G: Rheological characterization of dilute acid pretreated softwood. Biotechnol Bioeng 2011, 108(5):1031-1041.
- [33]Viamajala S, McMillan JD, Schell DJ, Elander RT: Rheology of corn stover slurries at high solids concentrations - effects of saccharification and particle size. Bioresour Technol 2009, 100(2):925-934.
- [34]Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM: Recovery of sugars from ionic liquid biomass liquor by solvent extraction. BioEnergy Research 2010, 3(2):123-133.
- [35]Sun N, Liu H, Sathitsuksanoh N, Stavila V, Sawant M, Bonito A, Tran K, George A, Sale K, Singh S, et al.: Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels 2013, 6(1):39. BioMed Central Full Text
- [36]Binder J, Raines R: Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A 2010, 107:4516-4521.
- [37]Yang J, Zhang XP, Yong QA, Yu SY: Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour Technol 2011, 102(7):4905-4908.
- [38]Ouyang J, Li ZJ, Li X, Ying HJ, Yong Q: Enhanced enzymatic conversion and glucose production via two-step enzymatic hydrolysis of corncob residue from xylo-oligosaccharides producer's waste. BioResources 2009, 4(4):1586-1599.
- [39]Thomsen MH, Thygesen A, Jorgensen H, Larsen J, Christensen BH, Thomsen AB: Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl Biochem Biotechnol 2006, 130(1–3):448-460.
- [40]Martin C, Thomsen MH, Hauggaard-Nielsen H, BelindaThomsen A: Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresour Technol 2008, 99(18):8777-8782.
- [41]Zhang Y, Liu YY, Xu JL, Yuan ZH, Qi W, Zhuang XS, He MC: High solid and low enzyme loading based saccharification of agricultural biomass. BioResources 2012, 7(1):345-353.
- [42]Varanasi P, Singh P, Auer M, Adams P, Simmons B, Singh S: Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels 2013, 6(1):14. BioMed Central Full Text
- [43]Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M: Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) - current technology and envisioning a mature technology. Biofuel Bioprod Bior 2009, 3(2):124-141.
- [44]Sokhansanj S, Hess JR: Biomass supply logistics and infrastructure #. T Biofuels 2009, 581:1-25.
- [45]Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R: Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 2010, 154(2):555-561.
- [46]Mendu V, Shearin T, Campbell JE, Stork J, Jae J, Crocker M, Huber G, DeBolt S: Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci U S A 2012, 109(10):4014-4019.
- [47]Dibble D, Li C, Sun L, George A, Cheng A, Cetinkol O, Benke P, Holmes B, Singh S, Simmons B: A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 2011, 13:3255-3264.
- [48]Gutowski K, Grant A, Willauer H, Huddleston J, Swatloski R, Holbrey J, Rogers R: Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 2003, 125:6632-6633.
- [49]Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW: Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 2011, 108(3):511-520.
- [50]Abbas C, Beery K, Dennison E, Corrington P: Thermochemical Treatment, Separation, and Conversion of Corn Fiber to Ethanol. In Lignocellulose Biodegradation. vol. 889. American Chemical Society; 2004:84-97.
- [51]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of structural carbohydrates and lignin in biomass.LAP-002 NREL analytical procedure. Golden, CO: National Renewable Energy Laboratory; 2004.
- [52]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of ash in biomass: LAP-005 NREL analytical procedure. Golden, CO: National Renewable Energy Laboratory; 2004.
- [53]Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM: Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 2009, 44(5):540-545.
PDF