期刊论文详细信息
Chemistry Central Journal
Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation
Juraj Černák1  Bohuslav Drahoš2  Miroslava Matiková-Maľarová2  Radek Zbořil3  Zdeněk Trávníček2 
[1]Department of Inorganic Chemistry, Institute of Chemistry, Faculty of Sciences, P.J. Šafárik University in Košice, Moyzesova 11, Košice, SK-041 54, Slovakia
[2]Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Palacký University, Tř, 17. listopadu 12, Olomouc, CZ-77146, Czech Republic
[3]Regional Centre of Advanced Technologies and Materials & Department of Physical Chemistry, Palacký University, Tř, 17. listopadu 12, Olomouc, CZ-77146, Czech Republic
关键词: CoFe2O4;    Nanocomposite particles;    Topotactic dehydration;    Mössbauer spectroscopy;    Thermal behavior;    Crystal structure;    Hexacyanidoferrate;   
Others  :  787964
DOI  :  10.1186/1752-153X-7-28
 received in 2012-11-15, accepted in 2013-01-28,  发布年份 2013
PDF
【 摘 要 】

Background

The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored.

In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation.

Results

The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, 57Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [FeII(en)2(μ-NC)CoIII(CN)4], FeIII(NH2CH2CH3)2(μ-NC)2CoII(CN)3] and FeIII[CoII(CN)5], which were suggested mainly from 57Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4.

Conclusions

It has been found that the thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O in air atmosphere is a gradual multiple process accompanied by the formation of intermediates with different composition, stereochemistry, oxidation as well as spin states of both the central transition metals. The decomposition is finished above 400°C and the ongoing heating to 600°C results in the formation of CoFe2O4-Co3O4 nanocomposite particles as the final decomposition product.

【 授权许可】

   
2013 Travnicek et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702225050379.pdf 2272KB PDF download
Figure 11. 147KB Image download
Figure 10. 72KB Image download
Figure 9. 45KB Image download
Figure 8. 101KB Image download
Scheme 1 25KB Image download
Figure 7. 86KB Image download
Figure 6. 70KB Image download
Figure 5. 54KB Image download
Figure 4. 84KB Image download
Figure 3. 92KB Image download
Figure 2. 89KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Scheme 1

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Verdaguer M, Girolami GS, Miller JS, Drillon M: Magnetic Prussian Blue Analogs. In Magnetism: Molecules to Materials, Volume 5. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2005.
  • [2]Catala L, Volatron F, Brinzei D, Mallah T: Functional Coordination Nanoparticles. Inorg Chem 2009, 48:3360-3370.
  • [3]Ricci F, Palleschi G: Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 2005, 21:389-407.
  • [4]Jayalakshmi M, Scholz FJ: Performance characteristics of zinc hexacyanoferrate/Prussian blue and copper hexacyanoferrate/Prussian blue solid state secondary cells. J Power Sources 2000, 91(2):217-223.
  • [5]Hu B, Fugetsu B, Yu H, Abe Y: Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. J Hazard Mater 2012, 217–218:85-91.
  • [6]Okubo M, Asakura D, Mizuno Y, Kim JD, Mizokawa T, Kudo T, Honma I: Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues AxMny[Fe(CN)6].nH2O (A: K, Rb): Robust Frameworks for Reversible Li Storage. J Phys Chem Lett 2010, 1:2063-2071.
  • [7]Uemura T, Ohba M, Kitagawa S: Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers. Inorg Chem 2004, 43:7339-7345.
  • [8]Liang C, Liu P, Xu J, Wang H, Wang W, Fang J, Wang Q, Shen W, Zhao J: A Simple Method for the Synthesis of Fe-Co Prussian Blue Analogue with Novel Morphologies, Different Structures, and Dielectric Properties. Synth React Inorg, Met-Org, Nano-Met Chem 2011, 41(9):1108.
  • [9]Koncki R: Chemical Sensors and Biosensors Based on Prussian Blues. Crit Rev Anal Chem 2002, 32:79-96.
  • [10]DeLongchamp DM, Hammond PT: Multiple-Color Electrochromism from Layer-by-Layer-Assembled Polyaniline/Prussian Blue Nanocomposite Thin Films. Chem Mater 2004, 16:4799-4805.
  • [11]Bustos L, Godinez LA: Modified Surfaces with Nano-Structured Composites of Prussian Blue and Dendrimers. New Materials for Advanced Electrochemical Applications. Int J Electrochem Sci 2011, 6:1-36.
  • [12]de Tacconi NR, Rajeshwar K: Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications. Chem Mater 2003, 15:3046-3062.
  • [13]Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F: Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord Chem Rev 1999, 192:1023-1047.
  • [14]Dunbar KR, Heintz RA: Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. In Progress in Inorganic Chemistry, Volume 45. New York: Karlin KD. John Wiley; 2007:283-391.
  • [15]Herrera JM, Bachschmidt A, Villain F, Bleuzen A, Marvaud V, Wernsdorfer W, Verdaguer M: Mixed valency and magnetism in cyanometallates and Prussian blue analogues. Phil Trans R Soc A 2008, 366:127-138.
  • [16]Sato O: Optically Switchable Molecular Solids: Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization. Acc Chem Res 2003, 36:692-700.
  • [17]Talham DR, Meisel MW: Thin films of coordination polymer magnets. Chem Soc Rev 2011, 40:3356-3365.
  • [18]Holmes SM, Girolami GS: Sol–gel Synthesis of KVII[CrIII(CN)6].2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100°C. J Am Chem Soc 1999, 121:5593-5594.
  • [19]Sato O: Photoinduced magnetization in molecular compounds. J Photochem and Photobiol C: Chem 2004, 5:203-223.
  • [20]Sato O, Tao J, Zhang YZ: Control of Magnetic Properties through External Stimuli. Angew Chem Int Ed 2007, 46:2152-2187.
  • [21]Culp JT, Park JH, Frye F, Huh YD, Meisel MW, Talham DR: Magnetism of metal cyanide networks assembled at interfaces. Coord Chem Rev 2005, 249:2642-2648.
  • [22]Bleuzen A, Lomenech C, Escax V, Villain F, Varret F, Cartier dit Moulin C, Verdaguer M: Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 1. Conditions to Observe the Phenomenon. J Am Chem Soc 2000, 122:6648-6652.
  • [23]Sato O, Einaga Y, Fujishima A, Hashimoto K: Photoinduced Long-Range Magnetic Ordering of a Cobalt-Iron Cyanide. Inorg Chem 1999, 38:4405-4412.
  • [24]Ohba M, Okawa H: Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coord Chem Rev 2000, 198:313-328.
  • [25]Colacio E, Ghazi M, Stoeckli-Evans H, Lloret F, Moreno JM, Perez C: Cyano-Bridged Bimetallic Assemblies from Hexacyanometalate, [M(CN)6]3- (M = MnIII and FeIII), and [M(N4-macrocycle)]2+ (M = FeIII, NiII and ZnII) Building Blocks. Syntheses, Multidimensional Structures, and Magnetic Properties. Inorg Chem 2001, 40:4876-4883.
  • [26]Marvaud V, Decroix C, Scuiller A, Guyard-Duhayon C, Vaissermann J, Gonnet F, Verdaguer M: Hexacyanometalate Molecular Chemistry: Heptanuclear Heterobimetallic Complexes; Control of the Ground Spin State. Chem Eur J 2003, 9:1677-1691.
  • [27]Funck KE, Hilfiger MG, Berlinguette CP, Shatruk M, Wernsdorfer W, Dunbar KR: Trigonal-Bipyramidal Metal Cyanide Complexes: A Versatile Platform for the Systematic Assessment of the Magnetic Properties of Prussian Blue Materials. Inorg Chem 2009, 48:3438-3452.
  • [28]Newton GN, Nihei M, Oshio H: Cyanide-Bridged Molecular Squares – The Building Units of Prussian Blue. Eur J Inorg Chem 2011, 20:3031-3042.
  • [29]Černák J, Orendáč M, Potočňák I, Chomič J, Orendáčová A, Skoršepa J, Feher A: Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties. Coord Chem Rev 2002, 224:51-66.
  • [30]Billing R: Optical and photoinduced electron transfer in ion pairs of coordination compounds. Coord Chem Rev 1997, 159:257-270.
  • [31]Billing R, Vogler A: Optical and photoinduced electron transfer in tris(ethylenediamine)cobalt(III)-cyanometallate ion pairs. J Photochem Photobiol A: Chem 1997, 103(3):239-247.
  • [32]Poulopoulou VG, Li ZW, Taube H: Comparison of the rates of substitution in [Ru(NH3)5H2O]3+ and [Os(NH3)5H2O]3+ by hexacyano complexes: substitution coupled to electron transfer. Inorg Chim Acta 1994, 225:173-184.
  • [33]Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG: Cambridge Structural Database System (CSDS). Cambridge, U.K; 1994.
  • [34]Bernhardt PV, Bozoglian F, Macpherson BP, Martinez M: Molecular mixed-valence cyanide bridged CoIII–FeII complexes. Coord Chem Rev 2005, 249:1902-1916.
  • [35]Bernhardt PV, Bozoglian F, Gonzalez G, Martınez M, Macpherson BP, Sienra B: Dinuclear Cyano-Bridged CoIII-FeII Complexes as Precursors for Molecular Mixed-Valence Complexes of Higher Nuclearity. Inorg Chem 2006, 45:74-82.
  • [36]Bernhardt PV, Martınez M, Rodrıguez C: Molecular CoIII/FeII Cyano-Bridged Mixed-Valence Compounds with High Nuclearities and Diversity of CoIII Coordination Environments: Preparative and Mechanistic Aspects. Inorg Chem 2009, 48:4787-4797.
  • [37]Seitz K, Peschel P, Babel D: On the Crystal Structure of the Cyanido Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3⋅ 2H2O, [Cu(en)2][Ni(CN)4]. Z Anorg Allg Chem 2001, 627:929-934.
  • [38]Bok LD, Leipoldt JG, Basson SS: The crystal structure of tris(ethylenediamine), cobalt(III) hexacyanoferrate(III)dihydrate, Co(C2H8N2)3[Fe(CN)6]2 · H2O. Z Anorg Allg Chem 1972, 389:307-314.
  • [39]Elder RC, Kennard GJ, Payne MD, Deutsch F: Synthesis and Characterization of Bis(ethylenediamine)cobalt(III) Complexes Containing Chelated Thioether Ligands. Crystal Structures of [(en)2Co(S(CH3)CH2CH2NH2)][Fe(CN)6] and [(en)2Co(S(CH2C6H5)CH2COO)](SCN)2. Inorg Chem 1978, 17:1296-1303.
  • [40]Maľarová M, Trávníček Z, Zbořil R, Černák J: [Co(en)3][Fe(CN)6]⋅ H2O and [Co(en)3][Fe(CN)6]: A dehydration process investigated by single crystal X-ray analysis, thermal analysis and Mössbauer spectroscopy. Polyhedron 2006, 25:2935-2943.
  • [41]Matiková-Maľarová M, Černák J, Massa W, Varret F: Three Co(III)–Fe(II) complexes based on hexacyanoferrates: Syntheses, spectroscopic and structural characterizations. Inorg Chim Acta 2009, 362:443-448.
  • [42]Ohashi Y, Yanagi K, Mitsuhashi Y, Nagata K, Kaizu Y, Sasada Y, Kobayashi H: Absolute Configuration of (−)D-Tris(2,2′-bipyridine)cobalt(III). J Am Chem Soc 1979, 101:4739-4740.
  • [43]Yanagi K, Ohashi Y, Sasada Y, Kaizu Y, Kobayashi H: Crystal structure and Absolute Configuration of (−)589-Tris(2,2′-bipyridine)cobalt(III) Hexacyanoferrate(III) Octahydrate. Bull Chem Soc Jpn 1981, 54:118-126.
  • [44]Singh N, Diwan K, Drew MGB: Supramolecular assemblies of metal ions in complex bimetallic and trimetallic salts based on hexacyanoferrate(III) ion. Polyhedron 2010, 29:3192-3197.
  • [45]Zhuge F, Wu B, Yang J, Janiak C, Tang N, Yang XJ: Microscale hexagonal rods of a charge-assisted second-sphere coordination compound [Co(DABP)3][Fe(CN)6]. Chem Commun 2010, 46:1121-1123.
  • [46]Ulas G, Brudvig GW: Redirecting Electron Transfer in Photosystem II from Water to Redox-Active Metal Complexes. J Am Chem Soc 2011, 133:13260-13263.
  • [47]Kersting B, Siebert D, Volkrner D, Kolm MJ, Janiak C: Synthesis and Characterization of Homo- and Heterodinuclear Complexes Containing the N3M(μ2-SR)3MN3 Core (M = Fe, Co, Ni). Inorg Chem 1999, 38:3871-3882.
  • [48]Mohai B: Thermolysis of cyano complexes. VII. On the thermal decomposition of hexacyanocobaltate(III); ligand exchange during thermolysis. Z Anorg Allg Chem 1972, 392:287-294.
  • [49]Horváth A, Mohai B: Thermolysis of complex cyanides - XIII Structural transformations at thermal decomposition of [M(en)3][M’(CN)5NO] double complexes. J Inorg Nucl Chem 1980, 42:195-199.
  • [50]Ng CW, Ding J, Gan LM: Microstructural Changes Induced by Thermal Treatment of Cobalt(II) Hexacyanoferrate(III) Compound. J Solid State Chem 2001, 156:400-407.
  • [51]Ng CW, Ding J, Shi Y, Gan LM: Structure and magnetic properties of copper(II) hexacyanoferrate(III) compound. J Phys Chem Solids 2001, 62:767-775.
  • [52]Pechenyuk SI, Domonov DP, Gosteva AN, Kadyrova GI, Kalinnikov VT: Synthesis, Properties, and Thermal Decomposition of Compounds [Co(En)3][Fe(CN)6] · 2H2O and [Co(En)3]4[Fe(CN)6]3 · 15H2O. Russ J Coord Chem 2012, 38:596-603.
  • [53]Kaupp G: Solid-state reactions, dynamics in molecular crystals. Curr Opin Solid State Mater Sci 2002, 6:131-138.
  • [54]Nicketic SR, Rasmussen K: Conformational Analysis of Coordination Compounds. IV. Tris(1,2-ethanediamine)- and Tris(2,3-butanediamine)cobalt(III) complexes. Acta Chem Scand 1978, A32:391-400.
  • [55]Matsuki R, Shiro M, Asahi T, Asai H: Absolute configuration of Λ-(+)589-tris(ethylenediamine)cobalt(III) triiodide monohydrate. Acta Crystallogr., Sect. E: Struct. Rep. Online 2001, 57:m448-m450.
  • [56]Ueda T, Bernard GM, McDonald R, Wasylishen RE: Cobalt-59NMR and X-ray diffraction studies of hydrated and dehydrated (±)-tris(ethylenediamine) cobalt(III) chloride. Solid State Nucl Magn Reson 2003, 24:163-183.
  • [57]Moron MC, Palacio F, Pons J, Casabo J, Solans X, Merabet KE, Huang D, Shi X, Teo BK, Carlin RL: Bimetallic Derivatives of [M(en)3I3+ Ions (M = Cr, Co): An Approach to Intermolecular Magnetic Interactions in Molecular Magnets. Inorg Chem 1994, 33:746-753.
  • [58]Saha MK, Lloret F, Bernal I: Inter-String Arrays of Bimetallic Assemblies with Alternative Cu2+-Cl-Cu2+ and Cu-NC-M (M = Co3+, Fe+3, Cr+3) Bridges: Syntheses, Crystal Structure, and Magnetic Properties. Inorg Chem 2004, 43:1969-1975.
  • [59]Salah El Fallah M, Rentschler E, Caneschi A, Sessoli R, Gatteschi D: A Three-Dimensional Molecular Ferrimagnet Based on Ferricyanide and [Ni(tren)]2+ Building Blocks. Angew Chem Int Ed Engl 1996, 35:1947-1949.
  • [60]Herchel R, Tuček J, Trávníček Z, Petridis D, Zbořil R: Crystal Water Molecules as Magnetic Tuners in Molecular Metamagnets Exhibiting Antiferro-Ferro-Paramagnetic Transitions. Inorg Chem 2011, 50:9153-9163.
  • [61]Reguera E, Férnandez-Bertrán J: Effect of the water of crystallization on the Mössbauer spectra of hexacyanoferrates (II and III). Hyperfine Interact 1994, 88:49-58.
  • [62]Nakamoto I: Infrared Spectra of Inorganic and Coordination Compounds. New York: John Wiley and Sons; 2002.
  • [63]Landolt-Bornstein GII: Atomic and Molecular Physics, Volume 2. Verlag: Springer; 1966.
  • [64]Comba P: Prediction and Interpretation of EPR Spectra of Low-Spin Iron(III) Complexes with the MM-AOM Method. Inorg Chem 1994, 33:4511-4583.
  • [65]Tang HY, Lin HY, Wang MJ, Liao MY, Liu JL, Hsu FC, Wu MK: Crystallization and Anisotropic Properties of Water-Stabilized Potassium Cobalt Oxides. Chem Mater 2005, 17:2162-2164.
  • [66]Viertelhaus M, Henke H, Anson CE, Powell AK: Solvothermal Synthesis and Structure of Anhydrous Manganese(II) Formate, and Its Topotactic Dehydration from Manganese(II) Formate Dihydrate. Eur J Inorg Chem 2003, 12:2283-2289.
  • [67]Song Y, Zavalij PY, Suzuki M, Whittingham MS: New Iron(III) Phosphate Phases: Crystal Structure and Electrochemical and Magnetic Properties. Inorg Chem 2002, 41:5778-5786.
  • [68]Greve J, Jess I, Nather C: Synthesis, crystal structures and investigations on the dehydration reaction of the new coordination polymers poly[diaqua-(μ2-squarato-O, O’)-(μ2–4,4′-bipyridine-N, N’)Me(II)] hydrate (Me = Co, Ni, Fe). J Sol State Chem 2003, 175:328-340.
  • [69]Feist M, Troyanov SI, Mehner H, Witke K, Kemnitz E: Halogeno Metallates of Transition Elements with Cations of Nitrogen-containing Heterocyclic Bases. VII Two Oxidation States and Four Different Iron Coordinations in one Compound. Synthesis, Crystal Structure, and Spectroscopic Characterization of 1,4-Dimethylpiperazinium Chloroferrate (II,III), (dmpipzH2)6[FeIICl4]2 [FeIIICl4]2[FeIICl5] [FeIIICl6]. Z Anorg Allg Chem 1999, 625:141-146.
  • [70]Wyrzykowski D, Maniecki T, Pattek-Janczyk A, Stanek J, Warnke Z: Thermal analysis and spectroscopic characteristics of tetrabutylammonium tetrachloroferrate(III). Thermochim Acta 2005, 435:92-98.
  • [71]Roodburn HM, Fisher JR: Reaction of Cyanogen with Organic Compounds. X. Aliphatic and Aromatic Diamines. J Org Chem 1957, 22:895-899.
  • [72]Zsakó J, Pokol G, Novák C, Várhelyi C, Dobó A, Liptay G: KINETIC ANALYIS OF TG DATA XXXV. Spectroscopic and thermal studies of some cobalt(III) chelates with ethylenediamine. J Therm Anal Calorim 2001, 64:843-856.
  • [73]Nihei M, Sekine Y, Suganami N, Nakazawa K, Nakao A, Nakao H, Murakami Y, Oshio H: Controlled Intramolecular Electron Transfers in Cyanide-Bridged Molecular Squares by Chemical Modifications and External Stimuli. J Am Chem Soc 2011, 133:3592-3600.
  • [74]Sakai T, Ohgo Y, Hoshino A, Ikeue T, Saigon T, Takahashi M, Nakanuta M: Electronic Structures of Five-Coordinate Iron(III) Porphyrin Complexes with Highly Ruffled Porphyrin Ring. Inorg Chem 2004, 43:5034-5043.
  • [75]Fejitha KS, Mathew S: Thermoanalytical investigations of tris(ethylenediamine)nickel(II) oxalate and sulphate complexes. J Therm Anal Calorim 2010, 102:931-939.
  • [76]Persoons RM, Degrave E, Van Denberghe RE: Mössbauer study of Co-substituted magnetite. Hyperfine Interact 1990, 54:655-660.
  • [77]Haneda K, Morrish AH: Noncollinear magnetic structure of CoFe2O4 small particles. J Appl Phys 1988, 63:4258-4261.
  • [78]Greenwood NN, Gibb TC: Mössbauer spectroscopy. New York: Barnes and Noble Inc; 1971.
  • [79]Fedotova YA, Baev VG, Lesnikovich AI, Milevich IA, Vorobeva SA: Magnetic Properties and Local Configurations of 57Fe Atoms in CoFe2O4 Powders and CoFe2O4/PVA Nanocomposites. Phys Sol State 2011, 53:647-653.
  • [80]Ngo AT, Bonville P, Pileni MP: Nanoparticles of CoxFey_zO4: Synthesis and superparamagnetic properties. Eur Phys J 1999, B9:583-592.
  • [81]Vivier V, Aguey F, Fournier J, Lambert JF, Bedioui F, Che M: Spectroscopic and Electrochemical Study of the Adsorption of [Co(en)2Cl2]Cl on γ-Alumina: Influence of the Alumina Ligand on Co(III)/(II) Redox Potential. J Phys Chem B 2006, 110:900-906.
  • [82]Diffraction O: CrysAlis CCD. Abingdon, England: Oxford Diffraction Ltd; 2006.
  • [83]Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R: SIR97: a new tool for crystal structure determination and refinement. J Appl Cryst 1999, 32:115-119.
  • [84]Farrugia LJ: WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 1999, 32:837-838.
  • [85]Sheldrick GM: A short history of SHELX. Acta Crystallogr, Sect A: Found Crystallogr 2008, 64:112-122.
  • [86]Brandenburg K: DIAMOND. Visual Crystal Structure Information System. Version 2.1e. Bonn, Germany: Crystal Impact GbR; 2000.
  文献评价指标  
  下载次数:58次 浏览次数:40次