期刊论文详细信息
BMC Cancer
Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog
Annapoorni Rangarajan2  Geetashree Mukherjee1  Pradeep Nagaraj2  Esthelin Vittal Krushik2  Tamoghna Mandal2  Sai A Balaji2  Anurag N Paranjape1 
[1]Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
[2]Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
关键词: NFκB;    Nanog;    Epithelial to mesenchymal transition;    Drug-resistance;    Breast cancer stem cells;    Bmi1;   
Others  :  1120955
DOI  :  10.1186/1471-2407-14-785
 received in 2014-01-27, accepted in 2014-10-09,  发布年份 2014
PDF
【 摘 要 】

Background

The Bmi1 polycomb ring finger oncogene, a transcriptional repressor belonging to the Polycomb group of proteins plays an important role in the regulation of stem cell self-renewal and is elevated in several cancers. In the current study, we have explored the role of Bmi1 in regulating the stemness and drug resistance of breast cancer cells.

Methods

Using real time PCR and immunohistochemistry primary breast tissues were analyzed. Retro- and lentiviruses were utilized to overexpress and knockdown Bmi1, RT-PCR and Western blot was performed to evaluate mRNA and protein expression. Stemness properties were analyzed by flow cytometry and sphere-formation and tumor formation was determined by mouse xenograft experiments. Dual luciferase assay was employed to assess promoter activity and MTT assay was used to analyze drug response.

Results

We found Bmi1 overexpression in 64% of grade III invasive ductal breast adenocarcinomas compared to normal breast tissues. Bmi1 overexpression in immortalized and transformed breast epithelial cells increased their sphere-forming efficiency, induced epithelial to mesenchymal transition (EMT) with an increase in the expression of stemness-related genes. Knockdown of Bmi1 in tumorigenic breast cells induced epithelial morphology, reduced expression of stemness-related genes, decreased the IC50 values of doxorubicin and abrogated tumor-formation. Bmi1-high tumors showed elevated Nanog expression whereas the tumors with lower Bmi1 showed reduced Nanog levels. Overexpression of Bmi1 increased Nanog levels whereas knockdown of Bmi1 reduced its expression. Dual luciferase promoter-reporter assay revealed Bmi1 positively regulated the Nanog and NFκB promoter activity. RT-PCR analysis showed that Bmi1 overexpression activated the NFκB pathway whereas Bmi1 knockdown reduced the expression of NFκB target genes, suggesting that Bmi1 might regulate Nanog expression through the NFκB pathway.

Conclusions

Our study showed that Bmi1 is overexpressed in several high-grade, invasive ductal breast adenocarcinomas, thus supporting its role as a prognostic marker. While Bmi1 overexpression increased self-renewal and promoted EMT, its knockdown reversed EMT, reduced stemness, and rendered cells drug sensitive, thus highlighting a crucial role for Bmi1 in regulating the stemness and drug response of breast cancer cells. Bmi1 may control self-renewal through the regulation of Nanog expression via the NFκB pathway.

【 授权许可】

   
2014 Paranjape et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211011014438.pdf 2678KB PDF download
Figure 5. 124KB Image download
Figure 4. 46KB Image download
Figure 3. 81KB Image download
Figure 2. 72KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pardal R, Clarke MF, Morrison SJ: Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003, 3:895-902.
  • [2]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-648.
  • [3]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-737.
  • [4]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8:755-768.
  • [5]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821-5828.
  • [6]Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67:1030-1037.
  • [7]O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445:106-110.
  • [8]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003, 100:3983-3988.
  • [9]Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB: Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009, 8:806-823.
  • [10]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4):704-715.
  • [11]Saxena M, Stephens MA, Pathak H, Rangarajan A: Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2011, 2:e179.
  • [12]Singh A, Settleman J: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010, 29:4741-4751.
  • [13]Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M: Stem cells and cancer; the polycomb connection. Cell 2004, 118:409-418.
  • [14]van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A: Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991, 65:737-752.
  • [15]Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK, Chang SY, Lee OK, Wu KJ: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010, 12(10):982-992.
  • [16]Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HF, Song LB, Zeng MS: Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 2011, 10:10. BioMed Central Full Text
  • [17]Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V: The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002, 62:4736-4745.
  • [18]Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, Li M: Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer 2012, 12:406. BioMed Central Full Text
  • [19]Simon JA, Kingston RE: Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009, 10:697-708.
  • [20]Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M: Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999, 13:2678-2690.
  • [21]Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999, 397:164-168.
  • [22]Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, van Lohuizen M, Betticher DC: The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 2001, 84:1372-1376.
  • [23]Zhang F, Sui L, Xin T: Correlations of BMI-1 expression and telomerase activity in ovarian cancer tissues. Exp Oncol 2008, 30:70-74.
  • [24]Silva J, Garcia V, Garcia JM, Pena C, Dominguez G, Diaz R, Lorenzo Y, Hurtado A, Sanchez A, Bonilla F: Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res 2007, 9:R55. BioMed Central Full Text
  • [25]Kohler C, Villar CB: Programming of gene expression by polycomb group proteins. Trends Cell Biol 2008, 18:236-243.
  • [26]Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, Li MZ, Zhang L, Kang TB, Fu LW, Huang WL, Xia YF, Tsao SW, Li M, Band V, Band H, Shi QH, Zeng YX, Zeng MS: The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009, 119(12):3626-3636.
  • [27]Schuringa JJ, Vellenga E: Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 2010, 17:294-299.
  • [28]Lessard J, Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003, 423:255-260.
  • [29]Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ: Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003, 425:962-967.
  • [30]Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008, 68:9125-9130.
  • [31]Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, Yonemitsu Y, Yokosuka O, Taniguchi H, Nakauchi H, Iwama A: The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 2008, 68:7742-7749.
  • [32]Lukacs RU, Memarzadeh S, Wu H, Witte ON: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 2010, 7:682-693.
  • [33]Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, Bednar F, Simeone DM: Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One 2013, 8:e55820.
  • [34]Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006, 66:6063-6071.
  • [35]Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A: Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 2009, 8:128. BioMed Central Full Text
  • [36]Paranjape AN, Mandal T, Mukherjee G, Kumar MV, Sengupta K, Rangarajan A: Introduction of SV40ER and hTERT into mammospheres generates breast cancer cells with stem cell properties. Oncogene 2012, 31:1896-1909.
  • [37]Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F: siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 2004, 32:W130-W134.
  • [38]Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD: Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003, 9(4):493-501.
  • [39]Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW: BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011, 112:2729-2741.
  • [40]Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA: Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001, 15:50-65.
  • [41]Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17:1253-1270.
  • [42]Dean M: ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 2009, 14:3-9.
  • [43]Wu X, Liu X, Sengupta J, Bu Y, Yi F, Wang C, Shi Y, Zhu Y, Jiao Q, Song F: Silencing of Bmi-1 gene by RNA interference enhances sensitivity to doxorubicin in breast cancer cells. Indian J Exp Biol 2011, 49:105-112.
  • [44]Liu ZG, Liu L, Xu LH, Yi W, Tao YL, Tu ZW, Li MZ, Zeng MS, Xia YF: Bmi-1 induces radioresistance in MCF-7 mammary carcinoma cells. Oncol Rep 2012, 27:1116-1122.
  • [45]Nicolini A, Ferrari P, Fini M, Borsari V, Fallahi P, Antonelli A, Berti P, Carpi A, Miccoli P: Stem cells: their role in breast cancer development and resistance to treatment. Curr Pharm Biotechnol 2011, 12:196-205.
  • [46]Jiang L, Song L, Wu J, Yang Y, Zhu X, Hu B, Cheng SY, Li M: Bmi-1 promotes glioma angiogenesis by activating NF-kappaB signaling. PLoS One 2013, 8:e55527.
  • [47]Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, Yuan J, Cai JC, He M, Wang L, Zeng M, Cheng SY, Li M: Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB Pathway. Am J Pathol 2010, 176(2):699-709.
  • [48]Shostak K, Chariot A: NF-kappaB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 2011, 13:214. BioMed Central Full Text
  • [49]Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, Ojeifo J, Jiao X, Yeow WS, Katiyar S, Shirley LA, Joyce D, Lisanti MP, Albanese C, Pestell RG: The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer research 2010, 70(24):10464-10473.
  • [50]Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T, Seto M, Kohno A, Kitamura K, Itoh Y, Asou N, Hamajima N, Emi N, Naoe T: BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 2005, 82(1):42-47.
  • [51]Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL, Shao JY, Wu QL, Li MZ, Xia YF, Fu LW, Huang WL, Dimri GP, Band V, Zeng YX: Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer research 2006, 66(12):6225-6232.
  • [52]Cui H, Hu B, Li T, Ma J, Alam G, Gunning WT, Ding HF: Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol 2007, 170:1370-1378.
  • [53]Cenci T, Martini M, Montano N, D'Alessandris QG, Falchetti ML, Annibali D, Savino M, Bianchi F, Pierconti F, Nasi S, Pallini R, Larocca LM: Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol 2012, 138(3):390-396.
  • [54]Kim JH, Yoon SY, Jeong SH, Kim SY, Moon SK, Joo JH, Lee Y, Choe IS, Kim JW: Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast 2004, 13:383-388.
  • [55]Gavrilescu MM, Todosi AM, Anitei MG, Filip B, Scripcariu V: Expression of bmi-1 protein in cervical, breast and ovarian cancer. Rev Med Chir Soc Med Nat Iasi 2012, 116:1112-1117.
  • [56]Wang Y, Zhou BP: Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 2011, 30:603-611.
  • [57]Siddique HR, Saleem M: Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 2012, 30:372-378.
  • [58]Pietersen AM, Evers B, Prasad AA, Tanger E, Cornelissen-Steijger P, Jonkers J, van Lohuizen M: Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol 2008, 18:1094-1099.
  • [59]Liu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005, 7:86-95. BioMed Central Full Text
  • [60]Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, Medina D, Matrisian LM, Kerr LD, Yull FE: Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell 2001, 12:1445-1455.
  • [61]Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD: NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 2004, 101:10137-10142.
  • [62]Cao Y, Luo JL, Karin M: IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A 2007, 104:15852-15857.
  • [63]Almstrup K, Hoei-Hansen CE, Wirkner U, Blake J, Schwager C, Ansorge W, Nielsen JE, Skakkebaek NE, Rajpert-De Meyts E, Leffers H: Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res 2004, 64:4736-4743.
  • [64]Ezeh UI, Turek PJ, Reijo RA, Clark AT: Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005, 104:2255-2265.
  • [65]Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M, Chow CW, Robb L: The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 2005, 104:2092-2098.
  • [66]Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW: Coexpression of Oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010, 70:10433-10444.
  • [67]Lu X, Mazur SJ, Lin T, Appella E, Xu Y: The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 2013, ᅟ:ᅟ. doi:10.1038/onc.2013.209
  • [68]Apostolou P, Toloudi M, Chatziioannou M, Ioannou E, Papasotiriou I: Cancer stem cells stemness transcription factors expression correlates with breast cancer disease stage. Curr Stem Cell Res Ther 2012, 7:415-419.
  文献评价指标  
  下载次数:11次 浏览次数:4次