Biology Direct | |
Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice | |
Yiyi Wang1  Lin Feng1  Yuxin Zhu1  Yuan Li1  Hanwei Yan1  Yan Xiang2  | |
[1] Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China | |
[2] Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei 230036, China | |
关键词: Populus; Expression; Gene duplication; Microsynteny; WRKY III; | |
Others : 1230707 DOI : 10.1186/s13062-015-0076-3 |
|
received in 2015-03-28, accepted in 2015-08-17, 发布年份 2015 | |
【 摘 要 】
Background
WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots).
Results
In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns.
Conclusions
This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought stress. Our results presented here may aid in the selection of appropriate candidate genes for further characterization of their biological functions in poplar.
Reviewers
This article was reviewed by Prof Dandekar and Dr Andrade-Navarro.
【 授权许可】
2015 Wang et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151107033137537.pdf | 2568KB | download | |
Fig. 11. | 75KB | Image | download |
Fig. 10. | 76KB | Image | download |
Fig. 9. | 26KB | Image | download |
Fig. 8. | 12KB | Image | download |
Fig. 7. | 74KB | Image | download |
Fig. 6. | 65KB | Image | download |
Fig. 5. | 112KB | Image | download |
Fig. 4. | 134KB | Image | download |
Fig. 3. | 108KB | Image | download |
Fig. 2. | 116KB | Image | download |
Fig. 1. | 40KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
【 参考文献 】
- [1]Cai C, Niu E, Du H, Zhao L, Feng Y, Guo W: Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton. Crop J 2014, 2(2):87-101.
- [2]Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, et al.: Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 2012, 287(6):495-513.
- [3]Eulgem T, Rushton PJ, Robatzek S, Somssich IE: The WRKY superfamily of plant transcription factors. Trends Plant Sci 2000, 5(5):199-206.
- [4]Wu K-L, Guo Z-J, Wang H-H, Li J: The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 2005, 12(1):9-26.
- [5]Guo C, Guo R, Xu X, Gao M, Li X, Song J, et al.: Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 2014, 65(6):1513-28.
- [6]He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, et al.: Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 2012, 31(7):1199-217.
- [7]Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhang F, et al.: Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 2014, 65(22):6629-44.
- [8]Llorca CM, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci. 2014;5.
- [9]Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, et al.: Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 2011, 12(1):471. BioMed Central Full Text
- [10]Du L, Chen Z: Identification of genes encoding receptor‐like protein kinases as possible targets of pathogen‐and salicylic acid‐induced WRKY DNA‐binding proteins in Arabidopsis. Plant J 2000, 24(6):837-47.
- [11]Pandey SP, Somssich IE: The role of WRKY transcription factors in plant immunity. Plant Physiol 2009, 150(4):1648-55.
- [12]Zhou X, Wang G, Sutoh K, Zhu J-K, Zhang W: Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 2008, 1779(11):780-8.
- [13]Zou C, Jiang W, Yu D: Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 2010, 61(14):3901-14.
- [14]Jiang Y, Deyholos MK: Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 2009, 69(1–2):91-105.
- [15]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 2009, 28(1):21-30.
- [16]Jiang Y, Liang G, Yu D: Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 2012, 5(6):1375-88.
- [17]Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, et al.: ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 2010, 63(3):417-29.
- [18]Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, et al.: OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 2012, 80(3):241-53.
- [19]Zhang YJ, Wang LJ. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol. 2005;5. doi:10.1186/1471-2148-5-1.
- [20]Kalde M, Barth M, Somssich IE, Lippok B: Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 2003, 16(4):295-305.
- [21]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-5.
- [22]Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR, et al.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res 2002, 30(1):69-72.
- [23]Li Z, Jiang H, Zhou L, Deng L, Lin Y, Peng X, et al.: Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 2014, 533(1):218-28.
- [24]Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, et al.: Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PLoS One 2014., 9(7) Article ID e102825
- [25]Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, Palmer L, et al.: Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 2003, 270(4):347-61.
- [26]Maher C, Stein L, Ware D: Evolution of Arabidopsis microRNA families through duplication events. Genome Res 2006, 16(4):510-9.
- [27]Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, et al.: Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 2007, 278(6):611-22.
- [28]Song Y, Gao J: Genome-wide analysis of WRKY gene family in Arabidopsis lyrata and comparison with Arabidopsis thaliana and Populus trichocarpa. Chin Sci Bull 2014, 59(8):754-65.
- [29]Chen L, Song Y, Li S, Zhang L, Zou C, Yu D: The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 2012, 1819(2):120-8.
- [30]Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, et al.: Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 2013, 64(8):2155-69.
- [31]Wang M, Vannozzi A, Wang G, Liang Y-H, Tornielli GB, Zenoni S et al. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Res. 2014;1. doi:10.1038/hortres.2014.16.
- [32]Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, et al.: WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 2012, 10(1):2-11.
- [33]Yan L, Liu Z-Q, Xu Y-H, Lu K, Wang X-F, Zhang D-P: Auto- and cross-repression of three Arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling. J Plant Growth Regul 2013, 32(2):399-416.
- [34]Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 2014;14. doi:10.1186/1471-2229-14-103.
- [35]Dittmar K, Liberles D. Evolution after gene duplication. John Wiley & Sons; 2011.
- [36]Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, et al.: The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One 2014., 9(10) Article ID e110896
- [37]Besseau S, Li J, Palva ET: WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 2012, 63(7):2667-79.
- [38]Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003, 31(13):3784-8.
- [39]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30(12):2725-9.
- [40]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-25.
- [41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-9.
- [42]Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in populus trichocarpa. BMC Plant Biol. 2010;10. doi:10.1186/1471-2229-10-145.
- [43]Guo A-Y, Zhu Q-H, Chen X, Luo J-C: GSDS: a gene structure display server. Yi Chuan 2007, 29(8):1023-6.
- [44]Bailey TL, Elkan C, editors. The value of prior knowledge in discovering motifs with MEME. Ismb; 1995.
- [45]Cai B, Yang X, Tuskan GA, Cheng Z-M: MicroSyn: A user friendly tool for detection of microsynteny in a gene family. BMC Bioinformatics 2011, 12(1):79. BioMed Central Full Text
- [46]Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, et al.: Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 2010, 10(1):282. BioMed Central Full Text
- [47]Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen J-Q: Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 2011, 285(1):79-90.
- [48]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:W609-12.
- [49]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-91.
- [50]Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y: Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci 2014, 229:96-110.
- [51]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008, 3(6):1101-8.
- [52]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 2001, 25(4):402-8.
- [53]Bryfczynski S, editor. GraphPad: a CS2/CS7 tool for graph creation. Proceedings of the 47th Annual Southeast Regional Conference; 2009: ACM.