期刊论文详细信息
Biotechnology for Biofuels
Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications
Chunfang Li2  Miaofen Du2  Bin Cheng2  Lushan Wang2  Xinqiang Liu2  Cuiqing Ma2  Chunyu Yang2  Ping Xu1 
[1] State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
[2] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
关键词: Domain C;    Thermostability;    Site-directed mutagenesis;    Evolutionary position;    α-Amylases;   
Others  :  793778
DOI  :  10.1186/1754-6834-7-18
 received in 2013-09-02, accepted in 2014-01-21,  发布年份 2014
PDF
【 摘 要 】

Background

Bioethanol production from various starchy materials has received much attention in recent years. α-Amylases are key enzymes in the bioconversion process of starchy biomass to biofuels, food or other products. The properties of thermostability, pH stability, and Ca-independency are important in the development of such fermentation process.

Results

A novel Flavobacteriaceae Sinomicrobium α-amylase (FSA) was identified and characterized from genomic analysis of a novel Flavobacteriaceae species. It is closely related with archaeal α-amylases in the GH13_7 subfamily, but is evolutionary distant with other bacterial α-amylases. Based on the conserved sequence alignment and homology modeling, with minor variation, the Zn2+- and Ca2+-binding sites of FSA were predicated to be the same as those of the archaeal thermophilic α-amylases. The recombinant α-amylase was highly expressed and biochemically characterized. It showed optimum activity at pH 6.0, high enzyme stability at pH 6.0 to 11.0, but weak thermostability. A disulfide bond was introduced by site-directed mutagenesis in domain C and resulted in the apparent improvement of the enzyme activity at high temperature and broad pH range. Moreover, about 50% of the enzyme activity was detected under 100°C condition, whereas no activity was observed for the wild type enzyme. Its thermostability was also enhanced to some extent, with the half-life time increasing from 25 to 55 minutes at 50°C. In addition, after the introduction of the disulfide bond, the protein became a Ca-independent enzyme.

Conclusions

The improved stability of FSA suggested that the domain C contributes to the overall stability of the enzyme under extreme conditions. In addition, successfully directed modification and special evolutionary status of FSA imply its directional reconstruction potentials for bioethanol production, as well as for other industrial applications.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705055110125.pdf 3257KB PDF download
Figure 5. 65KB Image download
Figure 4. 77KB Image download
Figure 3. 387KB Image download
Figure 2. 107KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sánchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008, 99(13):5270-5295.
  • [2]Shetty JK, Chotani G, Gang D, Bates D: Cassava as an alternative feedstocks in the production of renewable transportation fuel. Int Sugar J 2007, 109(1307):3-11.
  • [3]de Souza PM, Magalhues PO: Application of microbial α-amylase in industry–a review. Brazilian J Microbiol 2010, 41(4):850-861.
  • [4]Prakash O, Jaiswal N: α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2010, 160(8):2401-2414.
  • [5]Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin YH, Liu E, Guan HH, Hsieh YC, Chuankhayan P, Huang YC, Jeyaraman J, Liu MY, Chen CJ: Structure of Bacillus amyloliquefaciens α-amylase at high resolution: implications for thermal stability. Acta Crystallograph Sect F Struct Biol Cryst Commun 2010, 66(2):121-129.
  • [6]Linden A, Wilmanns M: Adaptation of class-13 α-amylases to diverse living conditions. Chembiochem 2004, 5(2):231-239.
  • [7]Shiau RJ, Hung HC, Jeang CL: Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis. Appl Environ Microbiol 2003, 69(4):2383-2385.
  • [8]Janeček S, Lévêque E, Belarbi A, Haye B: Close evolutionary relatedness of α-amylases from archaea and plants. J Mol Evol 1999, 48(4):421-426.
  • [9]Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A: α-Amylases from microbial sources–an overview on recent developments. Food Technol Biotech 2006, 44(2):173-184.
  • [10]Bentley IS, Williams EC: Starch conversion. In Industrial enzymology. Edited by Godfrey T, West SI. New York: Stockton Press; 1996:339-357.
  • [11]Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T: Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 1995, 61(4):1502-1506.
  • [12]Dong G, Vieille C, Savchenko A, Zeikus JG: Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 1997, 63(9):3569-3576.
  • [13]Koch R, Spreinat A, Lemke K, Antranikian G: Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 1991, 155(6):572-578.
  • [14]Lévêque E, Haye B, Belarbi A: Cloning and expression of an α-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterization of the recombinant enzyme. FEMS Microbiol Lett 2000, 186(1):67-71.
  • [15]Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M: Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J Biol Chem 2003, 278(11):9875-9884.
  • [16]Lee S, Mouri Y, Minoda M, Oneda H, Inouye K: Comparison of the wild-type α-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus α-amylase. J Biochem 2006, 139(6):1007-1015.
  • [17]Bauer MW, Driskill LE, Kelly RM: Glycosyl hydrolases from hyperthermophilic microorganisms. Curr Opin Biotechnol 1998, 9(2):141-145.
  • [18]Janeček S, Blesak K: Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues. Protein J 2011, 30(6):429-435.
  • [19]Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 1991, 280(2):309-316.
  • [20]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37(1):233-238.
  • [21]Stam MR, Danchin EG, Corinne R, Coutinho PM, Henrissat B: Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 2006, 19(12):555-562.
  • [22]Majzlová K, Pukajová Z, Janeček S: Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 2013, 367(15):48-57.
  • [23]Janeček S: Amylolytic enzymes-focus on the alpha-amylases from archaea and plants. Nova Biotechnol 2009, 9(1):5-25.
  • [24]Jones RA, Jermiin LS, Easteal S, Patel BK, Beacham IR: Amylase and 16S rRNA genes from a hyperthermophilic archaeabacterium. J Appl Microbiol 1999, 86(1):93-107.
  • [25]Janeček S, Svensson B, MacGregor EA: α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2013. doi: 10.1007/s00018-013-1388-z
  • [26]Xu Y, Tian XP, Liu YJ, Li J, Kim CJ, Yin H, Li WJ, Zhang S: Sinomicrobium oceani gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2013, 63(3):1045-1050.
  • [27]Jørgensen S, Vorgias CE, Antranikian G: Cloning, sequencing, characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 1997, 272(26):16335-16342.
  • [28]Da Lage JL, Feller G, Janeček S: Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the α-amylase model. Cell Mol Life Sci 2004, 61(1):97-109.
  • [29]Gilles C, Astier JP, Marchis-Mouren G, Cambillau C, Payan F: Crystal structure of pig pancreatic α-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem 1996, 238(2):561-569.
  • [30]Qian M, Haser R, Buisson G, Duée E, Payan F: The active center of mammalian α-amylase. Structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor derived from the X-ray structure analysis to 2.2 Å resolution. Biochemistry 1994, 33(20):6284-6294.
  • [31]Strokopytov B, Knegtel MA, Penninga D, Rozenboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW: Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 Å resolution. Implications for product specificity. Biochemistry 1996, 35(13):4241-4249.
  • [32]Janeček S: Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur J Biochem 1994, 224(2):519-524.
  • [33]Godány A, Majzlová K, Horváthová V, Janeček S: Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability. Biologia 2010, 65(3):408-415.
  • [34]Machius M, Wiegand G, Huber R: Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J Mol Biol 1995, 246(4):545-559.
  • [35]Janeček S: α-Amylase family: molecular biology and evolution. Progr Biophys Mol Biol 1997, 67(1):67-97.
  • [36]Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C: Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. J Mol Biol 2000, 301(4):1041-1057.
  • [37]Larson SB, Greenwood A, Cascio D, Day J, McPherson A: Refined molecular structure of pig pancreatic α-amylase at 2.1 Å resolution. J Mol Biol 1994, 235(5):1560-1584.
  • [38]Machius M, Declerck N, Huber R, Wiegand G: Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 1998, 6(3):281-292.
  • [39]Malhotra R, Noorwez SM, Satyanarayana T: Production and partial characterization of thermostable and calcium-independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol 2000, 31(5):378-384.
  • [40]Koch R, Zablowski P, Spreinat A, Antranikian G: Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 1990, 71(1–2):21-26.
  • [41]Sajedi RH, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar B, Asoodeh A, Moradian F: A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 2005, 36(5–6):671-671.
  • [42]Savchenko A, Vieille C, Kang S, Zeikus JG: Pyrococcus furiosus α-amylase is stabilized by calcium and zinc. Biochemistry 2002, 41(19):6193-6201.
  • [43]Lim JK, Lee HS, Kim YJ, Bae SS, Jeon JH, Kang SG, Lee JH: Critical factors to high thermostability of an α-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J Microbiol Biotechnol 2007, 17(8):1242-1248.
  • [44]Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoes M, Tranier S, Haser R, Svensson B: The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J 2007, 274(19):5055-5067.
  • [45]Ohdan K, Kuriki T, Kaneko H, Shimada J, Takada T, Fujimoto Z, Mizuno H, Okada S: Characteristics of two forms of α-amylases and structural implication. Appl Environ Microbiol 1999, 65(10):4652-4658.
  • [46]Vihinen M, Peltonen T, Iitiä A, Suominen I, Mäntsälä P: C-terminal truncations of a thermostable Bacillus stearothermophilus α-amylase. Protein Eng 1994, 7(10):1255-1259.
  • [47]Katsuya Y, Mezaki Y, Kubota M, Matsuura Y: Three-dimensional structure of Pseudomonas isoamylase at 2.2 Å resolution. J Mol Biol 1998, 281(5):885-897.
  • [48]Sanoja RR, Morlon-Guyot J, Jore J, Pintado J, Juge N, Guyot JP: Comparative characterization of complete and truncated forms of Lactobacillus amylovorus α-amylase and the role of the C-terminal direct repeats in raw starch binding. Appl Environ Microbiol 2000, 66(8):3350-3356.
  • [49]Igarashi K, Hatada Y, Ikawa K, Araki H, Ozawa T, Kobayashi T, Ozaki K, Ito S: Improved thermostability of a Bacillus α-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem Biophys Res Commun 1998, 248(2):372-377.
  • [50]Moranelli F, Yaguchi M, Calleja GB, Nasim A: Purification and characterization of the extracellular α-amylase activity of the yeast Schwanniomyces alluvius. Biochem Cell Biol 1987, 65(10):899-908.
  • [51]Grzybowska B, Szweda P, Synowiecki J: Cloning of the thermostable α-amylase gene from Pyrococcus woesei in Escherichia coli. Mol Biotechnol 2004, 26(2):101-109.
  • [52]Lane D: 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics. Edited by Stackebrandt E, Goodfellow M. Hoboken, NJ: John Wiley & Sons; 1991:115-175.
  • [53]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [54]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
  • [55]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
  • [56]Peitsch MC: Protein modeling by e-mail. Nat Biotechnol 1995, 13:658-660.
  • [57]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003, 31(13):3381-3385.
  • [58]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31(3):426-428.
  • [59]Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S: Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 2001, 67(4):1744-1750.
  文献评价指标  
  下载次数:43次 浏览次数:28次