期刊论文详细信息
Biotechnology for Biofuels
A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates
Yael Vazana5  Yoav Barak3  Tamar Unger2  Yoav Peleg2  Melina Shamshoum5  Tuval Ben-Yehezkel4  Yair Mazor4  Ehud Shapiro4  Raphael Lamed1  Edward A Bayer5 
[1] Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
[2] Structural Proteomics, The Weizmann Institute of Science, Rehovot 76100, Israel
[3] Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
[4] Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
[5] Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
关键词: Clostridium thermocellum;    Biofuels;    Cellulosic biomass;    Multi-enzyme complex;    Cellulases;    Cellulosomes;   
Others  :  794298
DOI  :  10.1186/1754-6834-6-182
 received in 2013-09-23, accepted in 2013-11-27,  发布年份 2013
PDF
【 摘 要 】

Background

Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture.

Results

Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins.

Conclusions

The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.

【 授权许可】

   
2013 Vazana et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705064526189.pdf 3088KB PDF download
Figure 9. 70KB Image download
Figure 8. 86KB Image download
Figure 7. 92KB Image download
Figure 6. 131KB Image download
Figure 5. 70KB Image download
Figure 4. 80KB Image download
Figure 3. 128KB Image download
Figure 2. 71KB Image download
Figure 1. 133KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983, 156:828-836.
  • [2]Lamed R, Setter E, Kenig R, Bayer EA: The cellulosome - a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 1983, 13:163-181.
  • [3]Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou J, Bayer EA: Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 2012, 13:210. BioMed Central Full Text
  • [4]Belaich JP, Tardif C, Belaich A, Gaudin C: The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 1997, 57:3-14.
  • [5]Xu Q, Bayer EA, Goldman M, Kenig R, Shoham Y, Lamed R: Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J Bacteriol 2004, 186:968-977.
  • [6]Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R: A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 1999, 181:6720-6729.
  • [7]Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R: A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 2000, 182:4915-4925.
  • [8]Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, Lamed R: The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 2003, 185:4548-4557.
  • [9]Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K: Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 2000, 64:254-260.
  • [10]Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ: Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 2003, 185:703-713.
  • [11]Rincon MT, Martin JC, Aurilia V, McCrae SI, Rucklidge GJ, Reid MD, Bayer EA, Lamed R, Flint HJ: ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol 2004, 186:2576-2585.
  • [12]Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA, Berg ME, White BA, Bayer EA, Lamed R: Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol 2006, 188:7971-7976.
  • [13]Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM, Antonopoulos DA: Berg Miller ME, White BA: Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 2010, 5:e12476.
  • [14]Bayer EA, Belaich J-P, Shoham Y, Lamed R: The cellulosomes: Multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [15]Gal L, Pages S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C, Belaich JP: Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 1997, 63:903-909.
  • [16]Bayer EA, Shoham Y, Lamed R: The prokaryotes: Lignocellulose-decomposing bacteria and their enzyme systems. Berlin: Springer-Verlag: The Prokaryotes. 4th edition. Edited by Rosenberg E; 2013:216-266.
  • [17]Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y: Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 1995, 61:1980-1986.
  • [18]Linder M, Teeri TT: The roles and function of cellulose-binding domains. J Biotechnol 1997, 57:15-28.
  • [19]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [20]Bayer EA, Morag E, Lamed R: The cellulosome - a treasure-trove for biotechnology. Trends Biotechnol 1994, 12:378-386.
  • [21]Shoham Y, Lamed R, Bayer EA: The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 1999, 7:275-281.
  • [22]Johnson EA, Sakojoh M, Halliwell G, Madia A, Demain AL: Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 1982, 43:1125-1132.
  • [23]Fujino T, Beguin P, Aubert JP: Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol 1993, 175:1891-1899.
  • [24]Guglielmi G, Beguin P: Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Microbiol Lett 1998, 161:209-215.
  • [25]Bayer EA, Smith SP, Noach I, Alber O, Adams JJ, Lamed R, Shimon LJW, Frolow F: Can we crystallize a cellulosome? In Biotechnology of lignocellulose degradation and biomass utilization . Ito Print Publishing Division, Tokyo, Japan: Sakka K, Karita S, Kimura T, Sakka M, Matsui H, Miyake H, Tanaka A; 2009:183-205.
  • [26]Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH: A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 2000, 182:5906-5910.
  • [27]Sabathe F, Belaich A, Soucaille P: Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 2002, 217:15-22.
  • [28]Sakka M, Goto M, Fujino T, Fujino E, Karita S, Kimura T, Sakka K: Analysis of a Clostridium josui cellulase gene cluster containing the man5A gene and characterization of recombinant Man5A. Biosci Biotechnol Biochem 2010, 74:2077-2082.
  • [29]Mosbah A, Belaich A, Bornet O, Belaich JP, Henrissat B, Darbon H: Solution Structure of the Module X2 1 of Unknown Function of the Cellulosomal Scaffolding Protein CipC of Clostridium cellulolyticum. J Mol Biol 2000, 304:201-217.
  • [30]Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA: Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 2012, 510:429-452.
  • [31]Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y: Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 1995, 360:121-124.
  • [32]Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA: Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain. Proteins 1997, 29:517-527.
  • [33]Lytle B, Myers C, Kruus K, Wu JH: Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J Bacteriol 1996, 178:1200-1203.
  • [34]Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA: Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001, 276:21257-21261.
  • [35]Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 2002, 277:49621-49630.
  • [36]Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA: Action of designer cellulosomes on homogeneous versus complex substrates: Controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 2005, 280:16325-16334.
  • [37]Caspi J, Irwin D, Lamed R, Li Y, Fierobe HP, Wilson DB, Bayer EA: Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 2008, 135:351-357.
  • [38]Mingardon F, Chantal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P: Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 2007, 73:3822-3832.
  • [39]Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl Environ Microbiol 2010, 76:3787-3796.
  • [40]Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y: Wilson DB. Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 2010, 1:e00285-00210.
  • [41]Morais S, Barak Y, Hadar Y, Wilson DB, Shoham Y: Lamed R. Bayer EA: Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. mBio 2011, 2:e00233-00211.
  • [42]Morais S, Heyman A, Barak Y, Caspi J, Wilson DB, Lamed R, Shoseyov O, Bayer EA: Enhanced cellulose degradation by nano-complexed enzymes: Synergism between a scaffold-linked exoglucanase and a free endoglucanase. J Biotechnol 2010, 147:205-211.
  • [43]Xu Q, Ding SY, Brunecky R, Bomble YJ, Himmel ME, Baker JO: Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels 2013, 6:126. BioMed Central Full Text
  • [44]Linshiz G, Yehezkel TB, Kaplan S, Gronau I, Ravid S, Adar R, Shapiro E: Recursive construction of perfect DNA molecules from imperfect oligonucleotides. Mol Syst Biol 2008, 4:191.
  • [45]Shabi U, Kaplan S, Linshiz G, Benyehezkel T, Buaron H, Mazor Y, Shapiro E: Processing DNA molecules as text. Syst Synth Biol 2010, 4:227-236.
  • [46]Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y: Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 2010, 172:34-44.
  • [47]Morag E, Halevy I, Bayer EA, Lamed R: Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J Bacteriol 1991, 173:4155-4162.
  • [48]Kataeva I, Li XL, Chen H, Choi SK, Ljungdahl LG: Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 1999, 181:5288-5295.
  • [49]Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y: Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 2003, 185:3042-3048.
  • [50]Gold ND, Martin VJ: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007, 189:6787-6795.
  • [51]Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 2009, 4:e5271.
  • [52]Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005, 5:3646-3653.
  • [53]Béguin P, Cornet P, Aubert JP: Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J Bacteriol 1985, 162:102-105.
  • [54]Schwarz WH, Grabnitz F, Staudenbauer WL: Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 1986, 51:1293-1299.
  • [55]McGrath CE, Wilson DB: Endocellulolytic activity of the Clostridium thermocellum Cel9C (formerly CbhA) catalytic domain. Ind Biotechnol 2008, 4:99-104.
  • [56]Kataeva IA, Seidel RD, Li XL, Ljungdahl LG: Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome. J Bacteriol 2001, 183:1552-1559.
  • [57]Shimon LJ, Frolow F, Yaron S, Bayer EA, Lamed R, Morag E, Shoham Y: Crystallization and preliminary X-ray analysis of a cohesin domain of the cellulosome from Clostridium thermocellum. Acta Crystallogr D Biol Crystallogr 1997, 53:114-115.
  • [58]Tavares GA, Beguin P, Alzari PM: The crystal structure of a type I cohesin domain at 1.7 A resolution. J Mol Biol 1997, 273:701-713.
  • [59]Caspi J, Barak Y, Haimovitz R, Gilary H, Irwin D, Lamed R, Wilson DB, Bayer EA: Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 2010, 4:193-201.
  • [60]Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JA, Money VA, Davies GJ, Bayer EA, Fontes CM, Fierobe HP, Gilbert HJ: The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 2008, 283:18422-18430.
  • [61]Carvalho AL, Dias FM, Nagy T, Prates JA, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LM, Romao MJ, Fontes CM, Gilbert HJ: Evidence for a dual binding mode of dockerin modules to cohesins. Proc Natl Acad Sci USA 2007, 104:3089-3094.
  • [62]Mayer F, Coughlan MP, Mori Y, Ljungdahl LG: Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy. Appl Environ Microbiol 1987, 53:2785-2792.
  • [63]Garcia-Alvarez B, Melero R, Dias FM, Prates JA, Fontes CM, Smith SP, Romao MJ, Carvalho AL, Llorca O: Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 2011, 407:571-580.
  • [64]Noach I, Levy-Assaraf M, Lamed R, Shimon LJ, Frolow F, Bayer EA: Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 2010, 399:294-305.
  • [65]Noach I, Frolow F, Alber O, Lamed R, Shimon LJ, Bayer EA: Intermodular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus. J Mol Biol 2009, 391:86-97.
  • [66]Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Brechot V: Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J Biol Chem 2004, 279:55985-55994.
  • [67]Czjzek M, Fierobe HP, Receveur-Brechot V: Small-angle X-ray scattering and crystallography: a winning combination for exploring the multimodular organization of cellulolytic macromolecular complexes. Methods Enzymol 2012, 510:183-210.
  • [68]Hammel M, Fierobe HP, Czjzek M, Kurkal V, Smith JC, Bayer EA, Finet S, Receveur-Brechot V: Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 2005, 280:38562-38568.
  • [69]Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME, Crowley MF: Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem 2011, 286:5614-5623.
  • [70]Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Brechot V, Fierobe HP: Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol 2011, 405:143-157.
  • [71]Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 2012, 338:1055-1060.
  • [72]Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein identification and analysis tools on the ExPASy server. Humana Press: Walker JM. Tolowa, NJ; 2005:571-607. [The proteomics protocols handbook]
  • [73]Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA: Matching fusion-protein systems for affinity analysis of two interacting families of proteins: The cohesin-dockerin interaction. J Mol Recogit 2005, 18:491-501.
  • [74]TAPPI: Technical Association of the Pulp and Paper Industry. Atlanta, Georgia: TAPPI Press: Test Methods; 1994.
  文献评价指标  
  下载次数:87次 浏览次数:11次