| Annals of Occupational and Environmental Medicine | |
| A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae) | |
| Jannelle Couret2  Mark Q Benedict1  | |
| [1] Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Microbiologia, Edificio B, 3 Piano, Via Gambuli, 06132 Perugia, Italy | |
| [2] Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA | |
| 关键词: Survival; Development rate; Density; Diet; Development; Temperature; Meta-analysis; Mosquito; | |
| Others : 866329 DOI : 10.1186/1472-6785-14-3 |
|
| received in 2013-09-06, accepted in 2014-01-24, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies.
Results
Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods.
Conclusions
Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission.
【 授权许可】
2014 Couret and Benedict; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140727062414635.pdf | 1108KB | ||
| 82KB | Image | ||
| 86KB | Image | ||
| 57KB | Image | ||
| 85KB | Image |
【 图 表 】
【 参考文献 】
- [1]Golizadeh A, Zalucki M: Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Insect Sci 2012, 19:609-620.
- [2]Vitolo HF, Souza GM, Silveira JAG: Cross-scale multivariate analysis of physiological responses to high temperature in two tropical crops with C-3 and C-4 metabolism. Environ Exp Bot 2012, 80:54-62.
- [3]Baras E, Ginanjar R, Ahmad M, Permana A, Priyadi A, Legendre M, Pouyard L, Slembrouck J: Biology and culture of the clown loach Chromobotia macracanthus. Aquat Living Resour 2012, 25:121-142.
- [4]Gillooly J: Effects of size and temperature on metabolic rate. Science 2001, 293:2248-2251.
- [5]Ahlgren G: Temperature fluctuations in bioloy and their application to algal growth constants. Oikos 1987, 49:177-190.
- [6]Davidson J: On the relationship between temperature and rate of development of insects at constant temperatures. J Anim Ecol 1944, 13:26-38.
- [7]Dixon AFG, Honek A, Keil P, Kotela MAA, Sizling AL, Jarosik V: Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 2009, 23:257-264.
- [8]Laudien H: Changing reaction systems. In Temperature and life. Edited by Precht H, Christopherson J, Hensel H, Larcher W. New York: Springer-Verlag; 1973:355-399.
- [9]Wigglesworth VB: The principles of insect physiology. London: Chapman and Hall; 1972.
- [10]Watt K: Ecology and resource management, a quantitative approach. New York: McGraw Hill; 1968.
- [11]Messenger P: Bioclimatic studies with insects. Annu Rev Entomol 1959, 4:183-206.
- [12]Andrewartha HG, Birch LC: The distribution and abundance of animals. Chicago: University of Chicago Press; 1954.
- [13]Powsner L: The effects of temperature on the durations of the developmental stages of Drosophila melanogaster. Physiol Zool 1935, 8:474-520.
- [14]Janisch E: The influence of temperature on the life-history of Insects. T Entomol Soc Lon 1932, 80:137-168.
- [15]Urarov BP: Insects and climate. T Entomol Soc Lon 1931, 79:1-238.
- [16]Cook W: Some effects of alternating temperaures on the growth and metabolism of cutworm larvae. J Econ Entomol 1927, 20:769-782.
- [17]Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, Kitron U, Vazquez-Prokopec GM: Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasite Vector 2012, 5:225.
- [18]Kingsolver J, Huey R: Size, temperature, and fitness: three rules. Evol Ecol Res 2008, 10:251-268.
- [19]Evans LM, Clark JS, Whipple AV, Whitham TG: The relative influences of host plant genotype and yearly abiotic variability in determining herbivore abundance. Oecologia 2012, 168:483-489.
- [20]Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH: Effects of size and temperature on developmental time. Nature 2002, 417:70-73.
- [21]Weaver SC, Reisen WK: Present and future arboviral threats. Antivir Res 2010, 85:328-345.
- [22]Juliano SA: Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol 2009, 54:37-56.
- [23]Richards SL, Lord CC, Pesko KN, Tabachnick WJ: Environmental and biological factors influencing Culex pipiens quinquefasciatus (Diptera: Culicidae) vector competence for West Nile virus. Am J Trop Med Hyg 2010, 83:126-134.
- [24]Gilles J, Lees R, Soliban S, Benedict M: Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. J Med Entomol 2011, 48:296-304.
- [25]Vazquez-Prokopec GM: Dengue control: the challenge ahead. Future Microbiol 2011, 6:251-253.
- [26]Ghosh D, Manson SM, McMaster RB: Delineating West Nile virus transmission cycles at various scales: the nearest neighbor distance–time model. Cartogr Geogr Inform 2010, 37:149-163.
- [27]Bisset JA, Marin R, Rodriguez MM, French L, Diaz M, Perez O: Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol 2013, 50:352-361.
- [28]McAllister JC, Godsey MS, Scott ML: Pyrethroid resistance in Aedes aegypti and Aedes albopictus from Port‐au‐Prince, Haiti. J Vec Ecol 2012, 37:325-332.
- [29]Legros M, Xu C, Okamoto K, Scott TW, Morrison AC, Lloyd AL, Gould F: Assessing the feasibility of controlling Aedes aegypti with transgenic methods: a model-based evaluation. PLoS ONE 2012, 7:e52235.
- [30]IPCC: Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.
- [31]Parkash R, Ramniwas S, Kajla B: Climate warming mediates range shift of two diffetentially adapted. J Asia-Pac Entomol 2013, 16:147-153.
- [32]Folguera G, Bastias DA, Bozinovic F: Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Phys A 2009, 154:389-393.
- [33]Kollberg I, Bylund H, Schmidt A, Gershenzon J, BjÖrkman C: Multiple effects of temperature, photoperiod and food quality on the performance of a pine sawfly. Ecol Entomol 2013, 38:201-208.
- [34]Farjana T, Tuno N, Higa Y: Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med Vet Entomol 2012, 26:210-217.
- [35]Dell AI, Pawar S, Savage VM: Systematic variation in the temperature dependence of physiological and ecological traits. PNAS 2011, 108:10591-10596.
- [36]Padmanabha H, LORD CC, LOUNIBOS LP: Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol 2011, 25:445-453.
- [37]Chown S, Gaston K: Body size variation in insects: a macroecological perspective. Biol Rev 2010, 85:139-169.
- [38]Flenner I, Richter O, Suhling F: Rising temperature and development in dragonfly populations at different latitudes. Freshwater Biol 2010, 55:397-410.
- [39]de Jong G: A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D. buzzatii. J Therm Biol 2010, 35:85-99.
- [40]Yang LH, Rudolf VHW: Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 2010, 13:1-10.
- [41]Farnesi LC, Martins AJ, Valle D, Rezende GL: Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz 2009, 104:124-126.
- [42]Stav G, Blaustein L, Margalit Y: Individual and interactive effects of a predator and controphic species on mosquito populations. Ecol Appl 2005, 15:587-598.
- [43]Agnew P, Hide M, Sidobre C, Michalakis Y: A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol Entomol 2002, 27:396-402.
- [44]Blanford S, Jenkins NE, Read AF, Thomas MB: Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar J 2012, 11:365.
- [45]Chaves L, Keogh C, Vazquez-Prokopec G, Kitron U: Combined sewage overflow enhances oviposition of Culex quinquefasciatus (Diptera: Culicidae) in urban areas. J Med Entomol 2009, 46:220-226.
- [46]Walker ED, Merritt RW, Kaufman MG, Ayres MP, Riedel MH: Effects of variation in quality of leaf detritus on growth of the eastern tree-hole mosquito, Aedes triseriatus (Diptera: Culicidae). Can J Zool 1997, 75:706-718.
- [47]Beck S: Insect thermoperiodism. Annu Rev Entomol 1983, 28:91-108.
- [48]Arnqvist G, Johansson F: Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae. Ecology 1998, 79:1847-1858.
- [49]Knies J, Kingsolver J: Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness. Am Nat 2010, 176:227-233.
- [50]Schwander T, Leimar O: Genes as leaders and followers in evolution. TREE 2011, 26:143-151.
- [51]Weaver SC, Reisen WK: Present and future arboviral threats. Antivir Res 2009. doi:10.1016/j.antiviral.2009.10.008
- [52]Pesko K, Westbrook C, Mores C, Lounibos L, Reiskind M: Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya virus. J Med Entomol 2009, 46:395-399.
- [53]MacClelland GAH: A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). T Roy Ent Soc London 1974, 126:239-259.
- [54]Tabachnick W, Powell JR: A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Gen Res 1979, 34:215-229.
- [55]Failloux A-B, Vazeille M, Rodhain F: Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. Mol Evol 2002, 55:653-663.
- [56]Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux A-B: Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Gen Res 2005, 86:1-11.
- [57]Gurevitch J, Curtis P, Jones M: Meta-analysis in ecology. Adv Ecol Res 2001, 32:199-207.
- [58]Bargielowski I, Nimmo D, Alphey L, Koella JC: Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS ONE 2011, 6:e20699.
- [59]Mohammed A, Chadee D: Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 2011, 119:38-43.
- [60]Padmanabha H, Bolker B, LORD CC, Rubio C, LOUNIBOS LP: Food availability alters the effects of larval temperature on Aedes aegypti growth. J Med Entomol 2011, 48:974-984.
- [61]Maciá A: Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae). Rev Soc Entomol Argent 2009, 68:107-114.
- [62]Reiskind M, Lounibus L: Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol 2009, 23:62-68.
- [63]Tejerina E, Almeida F, Almiron W: Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones Province, northeastern Argentina. Acta Trop 2009, 109:45-49.
- [64]Beserra E, Castro F: Biologia Comparada populações de Aedes (Stegomyia) aegypti (L.)(Diptera: Culicidae) da Paraíba; Compared biology of populations of Aedes (Stegomyia) aegypti (L.)(Diptera: Culicidae de Paraiba. Neotrop Entomol 2008, 37:081-085.
- [65]Chang H, Hsu E, Teng H, Ho C: Differential Survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol 2007, 44:205-210.
- [66]Beserra E, Castro F, Santos J, Santos T, Fernandes C: Biologia e exigências térmicas de Aedes aegypti (L.)(Diptera: Culicidae) provenientes de quatro regiões bioclimáticas da Paraíba. Neotrop Entomol 2006, 35:853-860.
- [67]Arrivillaga J, Barrera R: Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecol 2004, 29:11-20.
- [68]Bedhomme S, Agnew P, Sidobre C, Michalakis Y: Virulence reaction norms across a food gradient. P Roy Soc Lond B Bio 2004, 271:739-744.
- [69]Irvin N: Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. PNAS USA 2004, 101:891-896.
- [70]Kamimura K, Matsuse I, Takahashi H, Komukai J, Fokuda T, Suzuki K, Aratani M, Shirai Y, Mogi M: Effect of temperature on the development of Aedes aegypti and Aedes albopictus. Med Entomol Zool 2002, 53:53-58.
- [71]Lounibus L, Suarez S, Menendez Z, Nishimura N, Escher R, O’Connell S, Rey J: Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? J vector Entomol 2002, 27:86-95.
- [72]Tsuda Y, Takagi M: Survival and development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae under a seasonally changing environment in Nagasaki, Japan. Environ Entomol 2001, 30:855-860.
- [73]Tun-Lin W, Burkot T, Kay B: Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 2000, 14:31-37.
- [74]Costero A, Edman J, Clark G, Kittayapong P, Scott T: Survival of starved Aedes aegypti (Diptera: Culicidae) in Puerto Rico and Thailand. J Med Entomol 1999, 36:272-276.
- [75]Silva H, Silva I: Influência do período de quiescência dos ovos sobre o ciclo de vida de Aedes aegypti (Linnaeus, 1762)(Diptera, Culicidae) em condições de laboratório. Rev Soc Bras Med Tro 1999, 32:349-355.
- [76]Thu H, Aye K, Thien S: The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. SE Asian J Trop Med 1998, 29:280-284.
- [77]Becnel J, Undeen A: Influence of temperature on developmental parameters of the parasite/host system Edhazardia aedis (Microsporida: Amblyosporidae) and Aedes aegypti (Diptera: Culicidae). J Invetebr Pathol 1992, 60:299-303.
- [78]Rueda L, Patel K, Axtell R, Stinner R: Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 1990, 27:892-898.
- [79]Ho B, Ewert A, Chew L: Interspecific competition among Aedes aegypti, Ae. albopictus, and Ae. triseriatus (Diptera: Culicidae): larval development in mixed cultures. J Med Entomol 1989, 26:615-623.
- [80]Russell R: Larval competition between the introduced vector dengue fever in Australia, Aedes aegypti (L.), and a native container-breeding mosquito, Aedes notoscriptus (Skuse) (Diptera: Culicidae). Aust J Zool 1986, 34:527-534.
- [81]Soekiman S, Machfudz S, Adipoetro S, Yamanishi H, Matsumura Y: Comparative studies on the biology of Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1895) in a room condition. ICMR Ann 1984, 4:143-151.
- [82]Dye C: Intraspecific competition amongst larval Aedes aegypti: food exploitation or chemical interference? Ecol Entomol 1982, 7:39-46.
- [83]Saul S, Novak R, Ross Q: The role of preadult stages in the ecological separation of two subspecies of Aedes aegypti. Am Midl Nat 1980, 104:118-134.
- [84]Gilpin ME, McClelland GA: Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr Zool 1979, 25:355-388.
- [85]Dadd R, Kleinjan R, Sneller V: Development of several species of mosquito larvae in fully defined dietary media: preliminary evaluation. Mosq News 1977, 37:699-703.
- [86]Lachmajer J, Hien D: Effect of the environmental conditions on eggs and water living stages of Aedes aegypti (Linn.) and Aedes albopictus (Skuse), vectors of dengue haemorrhagic fever in Viet-Nam. Bull Inst Marit Trop Med Gdynia 1975, 26:353-367.
- [87]Ameen M, Moizuddin M: Duration of the various developmental stages of Aedes aegypti (L) (Diptera: Culicidae) in Dacca City. Dacca University Studies B 1973, 21:15-25.
- [88]Moore C, Whitacre D: Competition in mosquitoes 2. Production of Aedes-aegypti, Larval growth retardant at various densities and nutrition levels. Ann Entomol Soc Am 1972, 65:915-918.
- [89]Southwood T, Murdie G, Yasuno M, Tonn R, Reader P: Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ 1972, 46:211-226.
- [90]Rosay B: Comparative growth rates of aquatic stages of ten mosquito species (Diptera: Culicidae) at two constant temperatures. Proc Utah Mosq Abat Assoc 1972, 25:31-44.
- [91]Nayar JK, Sauerman DM: A comparative study of growth and development in Florida mosquitoes: Part 1: Effects of environmental factors on ontogenetic timings, endogenous diurnal rhythm and synchrony of pupation and emergence. J Med Entomol 1970, 7:163-174.
- [92]McCray E, Fay R, Schoof H: The bionomics of Landesteria culicis and Aedes aegypti. J Invertebr Pathol 1970, 16:42-53.
- [93]Keirans J: Larval development of Aedes aegypti (L.) in used auto tires. Mosq News 1969, 29:43-46.
- [94]Moore C, Fisher B: Competition in mosquitoes: density and species ratio effects on growth, mortality, fecundity, and production of growth retardant. Ann Entomol Soc Am 1969, 62:1325-1331.
- [95]Peters T, Chevone B, Greenough N, Callahan R, Barbosa P: Intraspecific competition in Aedes aegypti (L.) larvae: I. Equipment, techniques, and methodology. Mosq News 1969, 29:667-674.
- [96]Brust R: Effect of starvation on molting and growth in Aedes aegypti and A. vexans. J Econ Entomol 1968, 61:1570-1572.
- [97]Keirans J, Fay R: Effect of food and temperatures on Aedes aegypti (L.) and Aedes triseriatus (Say) larval development. Mosq News 1968, 28:338-341.
- [98]Wada Y: Effect of larval density on the development of Aedes aegypti (L.) and the size of adults. Quaest Entomol 1965, 1:223-249.
- [99]Lea A: Some relationships between environment, corpora allata, and egg maturation in Aedine mosquitoes. J Insect Physiol 1963, 9:793-809.
- [100]Ofuji K: Possibility of establishment of yellow fever mosquito, Aedes aegypti L. in Japan. 2. Cold- and dry-resistance of eggs, ecological zero point of larvae, development of larvae in early spring, and general summary. Endemic Dis Bull Nagasaki Univ 1963, 4:209-222.
- [101]Christophers S: Aedes aegypti L., the yellow fever mosquito: its life history, bionomics, and structure. London: Cambridge University Press; 1960.
- [102]Bar-Zeev B: The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bull Entomol Res 1958, 49:157-163.
- [103]Headlee TJ: The relative effects on insect metabolism of temperatures derived from constant and variable sources. J Econ Entomol 1940, 33:361-364.
- [104]Headlee TJ: Further studies of the relative effects on insect metabolism of temperatures derived from constant and variable sources. J Econ Entomol 1941, 34:171-174.
- [105]Faraway JJ: Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Boca Raton, FL: CRC Press; 2006.
- [106]Pinheiro J, Bates D, Saikat D, Sarkar D, R Core Team: Nlme: linear and nonlinear mixed effects models. 2013. R package version 3.1-109
- [107]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/ webcite
- [108]Ikemoto T: Intrinsic optimum temperature for development of insects and mites. Environ Entomol 2005, 34:1377-1387.
- [109]Ikemoto TTK: A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variable subject to error. Environ Entomol 2000, 29:671-682.
- [110]Hedges LV, Olkin I: Stasticical methods for meta-analysis. New York: Academic Press, Inc; 1985.
- [111]Damos P: Temperature-driven models for insect development and vital thermal requirements. Psyche 2012. doi.org/10.1155/2012/123405
- [112]Couret J, Dotson EM, Benedict M: Temperature, larval diet, and density effects on development rates and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONEin press
- [113]Barrera R, Amador M, Clark GG: Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol 2006, 43:484-492.
- [114]Dye C: Competition amongst larval Aedes aegypti: the role of interference. Ecol Entomol 1984, 9:355-357.
- [115]Fitzgerald D, Tipping PW: Effect of insect density and host plant quality on wing-form in Megamelus scutellaris(Hemiptera: Delphacidae). Florida Entomol 2013, 96:124-130.
- [116]Logan H: Non-linear models and temperature dependent development in arthropods- a reply to Dr Jerome A. Onsager. Environ Entomol 2011, 12:R5.
- [117]Kontodimas D, Eliopoulos P, Stathas G, Economou L: Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman)(Coleoptera: Coccinellidae) preying on Planococcus citri (Risso)(Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 2004, 33:1-11.
- [118]Roltsch WJ, Mayse MA, Clausen K: Temperature-dependent development under constant and fluctuating temperatures: comparison of linear versus nonlinear methods for modeling development of western grapeleaf skeletonizer (Lepidoptera: Zygaenidae). Environ Entomol 1990, 19:1689-1697.
- [119]David J, Gibert P, Gravot E, Petavy G, Morin J, Karan D, Moreteau B: Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits. J Therm Biol 1997, 22:441-451.
- [120]Arnold CY: The determination and significance of the base temperature in a linear heat unit system. Am Soc Hort Sci 1959, 74:430-445.
- [121]Jarosík V, Honek A, Dixon AFG: Developmental rate isomorphy in insects and mites. Am Nat 2002, 160:497-510.
- [122]Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S: A novel rate model of temperature-dependent development for arthropods. Environ Entomol 1999, 28:22-29.
- [123]Richardson K, Hoffmann AA, Johnson P, Ritchie S, Kearney MR: Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution. J Med Entomol 2011, 48:914-923.
- [124]Pradhan S: Insect population studies II. Rate of insect develoment under variable temperatures of the field. Proc Nat Inst Sci India 1945, 11:74-80.
- [125]Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 2009, 137:1188-1202.
- [126]Sharpe PJH, Curry GL, DeMichele DW, Cole CL: Distribution model of organism development times. J Theor Biol 1977, 66:21-38.
- [127]Sharpe P, Hu L: Reaction kinetics of nutrition dependent poikilotherm development. J Theor Biol 1980, 82:317-333.
- [128]Curry GL: Foundations of stochastic development. J Theor Biol 1978, 74:397-410.
- [129]Hagstrum DW, Workman E: Interaction of temperature and feeding rate in determining the rate of development of larval Culex tarsalis (Diptera, Culicidae). Ann Entomol Soc Am 1971, 64:668-671.
- [130]Carrington LB, Seifert SN, Willits NH, Lambrechts L, Scott TW: Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J Med Entomol 2013, 50:43-51.
- [131]Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW: Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg 2013, 88:689-697.
- [132]Paaijmans K, Imbahale S, Thomas M, Takken W: Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J 2010, 9:196.
- [133]Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. PNAS USA 2011, 108:7460-7465.
- [134]Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW: Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 2013, 8:e58824.
- [135]Huffaker CB: The temperature relations of the immature stages of the malarial mosquito, Anopheles quadrimaculatus Say, with a comparison of the developmental power of constant and variable temperatures in insect metabolism. Ann Entomol Soc Am 1944, 37:1-27.
- [136]Joshi D: Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J Therm Biol 1996, 21:151-154.
- [137]Lounibos L, Suárez S, Menéndez Z, Nishimura N, Escher RL, O’Connell SM, Rey JR: Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? J Vector Ecol 2002, 27:86-95.
- [138]Murrell EG, Damal K, LOUNIBOS LP, Juliano SA: Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Ann Entomol Soc Am 2011, 104:688-698.
- [139]Murrell EG, Juliano SA: Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 2008, 45:375-383.
- [140]Bochdanovits Z: Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster. J Evol Biol 2003, 16:1159-1167.
- [141]Ghosh SM, Testa ND, Shingleton AW: Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc R Soc B 2013, 280:1471-1471.
- [142]Mori A, Oda T, Zaitsu M, Ueda M: Studies on the developing period of larval stage of the Culex pipiens complex in Japan. Trop Med 1988, 30:155-161.
- [143]Olanratmanee P, Kittayapong P, Chansang C, Hoffmann AA, Weeks AR, Endersby NM: Population genetic structure of Aedes (Stegomyia) aegypti (L.) at a micro-spatial scale in Thailand: implications for a dengue suppression strategy. PLoS Negl Trop Dis 2013, 7:e1913.
- [144]Endersby NM, Hoffmann AA, White VL, Ritchie SA, Johnson PH, Weeks AR: Changes in the genetic structure of Aedes aegypti (Diptera: Culicidae) populations in Queensland, Australia, across Two seasons: implications for potential mosquito releases. J Med Entomol 2011, 48:999-1007.
- [145]Smith CC, Fretwell SD: The optimal balance between size and number of offspring. Am Nat 1974, 108:499-506.
- [146]Fox C, Czesak M: Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 2000, 45:341-369.
- [147]Muturi EJ, Blackshear M, Montgomery A: Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol 2012, 37:154-161.
- [148]Muturi EJ, Alto BW: Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector-Borne Zoonot 2011, 11:1157-1163.
- [149]Carriere Y, Roff DA: The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 1995, 102:389-396.
- [150]Messina FJ, Fox CW: Offspring size and number. In Evolutionary ecology: concepts and case studies. Edited by Fox CW, Roff DA, Fairbairn DJ. Oxford, UK: Oxford University Press; 2001:113-127.
- [151]Maciel-De-Freitas R, Codeço CT, Lourenço-De-Oliveira R: Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol 2007, 21:284-292.
- [152]Alto BW, Reiskind MH, Lounibos LP: Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 2008, 79:688-695.
- [153]Schneider JR, Morrison AC, Astete H, Scott TW, Wilson ML: Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos, Peru. J Med Entomol 2004, 41:634-642.
- [154]Alto B, Lounibos L, Higgs S, Juliano SA: Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 2005, 86:3279-3288.
- [155]Depinay J, Mbogo C, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J 2004, 3:29.
PDF