BMC Biotechnology | |
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis) | |
Gustavo R Oliveira3  Maria CM Silva6  Wagner A Lucena5  Erich YT Nakasu6  Alexandre AP Firmino5  Magda A Beneventi6  Djair SL Souza4  José E Gomes6  José DA de Souza6  Daniel J Rigden2  Hudson B Ramos4  Carlos R Soccol3  Maria F Grossi-de-Sa1  | |
[1] Pós-Graduação em Ciências Genômicas e Biotecnologia - UCB, Brasília, DF, Brasil | |
[2] Institute of Integrative Biology, University of Liverpool, Liverpool, UK | |
[3] Programa de Pós-Graduação em Processos Biotecnológicos-UFPR, Curitiba, PR, Brasil | |
[4] Departamento de Biologia Celular, Universidade de Brasília - UnB, Brasília, DF, Brasil | |
[5] Programa de Pós-graduação em Biologia Celular e Molecular, UFRGS, Porto Alegre, RS, Brasil | |
[6] Embrapa Recursos Genéticos e Biotecnologia, PqEB- Final W5 Norte -Brasília, DF, Brasil | |
关键词: Molecular modeling; Phage display; DNA shuffling; Cotton; Bacillus thuringiensis; Anthonomus grandis; | |
Others : 1145824 DOI : 10.1186/1472-6750-11-85 |
|
received in 2011-04-05, accepted in 2011-09-09, 发布年份 2011 | |
【 摘 要 】
Background
The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis.
Results
Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability.
Conclusions
The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.
【 授权许可】
2011 Oliveira et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150403024307948.pdf | 4542KB | download | |
Figure 7. | 129KB | Image | download |
Figure 6. | 108KB | Image | download |
Figure 5. | 24KB | Image | download |
Figure 4. | 66KB | Image | download |
Figure 3. | 17KB | Image | download |
Figure 2. | 23KB | Image | download |
Figure 1. | 42KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Silvie P, Leroy T: Manual de identificação das pragas e seus danos no algodoeiro.Cascavel: COODETEC. 2001.
- [2]Scataglini MA, Lanteri AA, Confalonieri VA: Diversity of boll weevil populations in South America: a phylogeographic approach. Genetica 2006, 126:353-362.
- [3]Martins WFS, Ayres CFJ, Lucena WA: Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera: Curculionidae), the major cotton pest in the new World. Genet Mol Res 2007, 6(1):23-32.
- [4]Nakasu EYT, Firmino AAP, Dias SC, Rocha LT, Ramos HB, Oliveira GR, Lucena WA, Carlini CR, Grossi-de-Sa MF: Analysis of Cry8Ka5-binding proteins from Anthonomus grandis (Coleoptera: Curculionidae) midgut. J Invertebr Pathol 2010, 104(3):227-230.
- [5]Layton B: Boll weevil eradication efort. [http://deltafarmpress.com/boll-weevil-eradication-effort] webcite
- [6]Johnson J, Kiawu J, MacDonald S, Meyer L, Rosera E, Skelly C: THE UNITED STATES AND WORLD COTTON OUTLOOK. [http://www.usda.gov/oce/forum/2011_Speeches/2011-Cotton.pdf] webcite
- [7]James C: Global Status of Commercialized Biotech/GM Crops. Ithaca: ISAAA; Executive Summary; 2008.
- [8]Bravo A, Soberón M: How to cope with insect resistance to Bt toxins? Trends Biotechnol 2008, 26(10):573-579.
- [9]James C: Global Status of Commercialized Biotech/GM Crops. Ithaca: ISAAA: Executive Summary; 2009.
- [10]Höfte H, Whiteley HR: Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 1989, 53:242-255.
- [11]Silva-Werneck JO, Ellar DJ: Characterization of a novel Cry9Bb d-endotoxin from Bacillus thuringiensis. J Invertebr Pathol 2008, 98:320-328.
- [12]Pigott CR, Ellar DJ: Role of Receptors In Bacillus thuringiensis Crystal Toxin Activity. Microbiol Mol Biol Rev 2007, 71:255-281.
- [13]Soberon M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A: Engineering Modified Bt Toxins to Counter Insect Resistance. Science 2007, e318(5856):1640-1642.
- [14]Fernández LE, Gómez I, Pacheco S, Arenas I, Gilla SS, Bravo A, Soberón M: Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins. Peptides 2008, 29:324-329.
- [15]Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr: A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 2006, 103:9897-9902.
- [16]Guo SY, Ye S, Song FP, Zhang J, Wei L, Shu CL: Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 2009, 168:259-266.
- [17]Broderick NA, Raffa KF, Handelsman J: Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci 2006, 103:15196-15199.
- [18]Stemmer WPC: Rapid evolution of a protein in vitro by DNA shuffling. Lett Nat 1994, 370:389-391.
- [19]Zhao H, Arnold FH: Opmitization for DNA shuffling for high fidelity recombination. Nucleic Acids Res 1997, 25:1307-1308.
- [20]Lassner M, Bedbrook J: Directed molecular evolution in plant improvement. Curr Opin Plant Biol 2001, 4:152-156.
- [21]Rosic NN, Huang W, Johnston WA, James J, Devos JJ, Gillam EMJ: Extending the diversity of cytochrome P450 enzymes by DNA family shuffling. Gene 2007, 395:40-48.
- [22]Grossi-de-Sa MF, Magalhães MTQ, Silva MS, Silva SMB, Dias SC, Nakasu EYT, Brunetta PSF, Oliveira GR, Oliveira-Neto OB, Oliveira RS, Soares LHB, Ayub MAZ, Siqueira HAA, Figueira ELZ: Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type toxin from a Brazilian Bacillus thuringiensis strain. J Biochem Mol Biol 2007, 40:773-782.
- [23]Willats WGT: Phage display: practicalities and prospects. Plant Mol Biol 2002, 50:837-854.
- [24]Craveiro KIC, Gomes Júnior JE, Silva MCM, Macedo LLP, Lucena WA, Silva MS, Antonino de Souza JD Júnior, Oliveira GR, Magalhães MTQ, Santiago AD, Grossi-de-Sa MF: Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J Biotechnol 2010, 145:215-221.
- [25]Grossi-de-Sa MF, Oliveira GR, Silva MCM, Rocha TL, Magalhães MTQ: Molécula de ácido nucléico isolada, construção gênica, vetor, célula transgênica, método para obtenção de uma célula e de uma planta transgênica, polipeptídeo isolado e purificado, composição pesticida biodegradável, método para o controle de uma praga, método de obtenção de linhagens transgênicas resistentes a um inseto praga. INPI Patent 012090001018 2009.
- [26]Wolfsberger M, Luethy P, Maurer A, Parenti P, Sacchi FV, Giordana B, Hanozet GM: Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp Biochem Phyisol 1987, 86:301-308.
- [27]Bradford MM: A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 1976, 72:248-254.
- [28]Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF III: Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods 2000, 242:159-181.
- [29]Barbas CF III, Burton DR, Scott JK, Silverman GJ: Phage Display: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 2000.
- [30]Laemmli UK: Cleavage of structural proteins during assembly of head of Bacteriophage-T4. Nature 1970, 227:680-685.
- [31]Finney DJ: Probit Analysis. Cambridge: Cambridge University Press; 1971.
- [32]Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
- [33]Staden R: The Staden Sequence Analysis Package. Mol Biotechnol 1996, 5:233-241.
- [34]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
- [35]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
- [36]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235-242.
- [37]Sali A, Blundell TL: Comparative Protein Modelling by Satisfaction of Spatial Restraints. J Mol Biol 1993, 234:779-815.
- [38]Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26:283-291.
- [39]The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC;
- [40]Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 2008, 62:775-806.
- [41]Li J, Carrol J, Ellar DJ: Crystal structure of insecticidal α-endotoxin from Bacillus thuringiensis at 2.5A ° resolution. Nature 1991, 353:815-821.
- [42]Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L: Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr Sect D 2001, 57:1101-1109.
- [43]Kasman LM, Lukowiak AA, Garczynski SF, McNall RJ, Youngman P, Adang MJ: Phage display of a biologically active Bacillus thuringiensis toxin. Appl Environ Microbiol 1998, 64:2995-3003.
- [44]Vílchez S, Jacoby J, Ellar DJ: Display of Biologically Functional Insecticidal Toxin on the Surface of λ Phage. Appl Env Microbiol 2004, 70:6587-6594.
- [45]Pacheco S, Gómez I, Sato R, Bravo A, Soberón M: Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. J Invertebr Pathol 2006, 92:45-49.
- [46]Barbas CF III, Bain JD, Hoekstra DM, Lerner RA: Semisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem. Proc Natl Acad Sci 1992, 89:4457-4461.
- [47]Wang CI, Yang Q, Craik CS: Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J Biol Chem 1995, 270:12250-12256.
- [48]Kiczak L, Kasztura M, Koscielska-Kasprzak K, Dadlez M, Otlewski J: Selection of potent chymotrypsin and elastase inhibitors from M13 phage library of basic pancreatic trypsin inhibitor (BPTI). Biochim Biophys Acta 2001, 1550:153-63.
- [49]Maun RH, Eigenbrot C, Lazarus RA: Engineering Exosite Peptides for Complete Inhibition of Factor VIIa Using a Protease Switch with Substrate Phage. J Biol Chem 2003, 278:21823-21830.
- [50]Ishikawa H, Hoshino Y, Kawahara T, Kitajima M, Kitami M, Watanabe A, Bravo A, Soberon M, Honda A, Katsuro Yaoi K, Sato R: A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol Biotechnol 2007, 36:90-101.
- [51]Rausell C, García-Robles I, Sánchez J, Muñoz-Garay C, Martínez-Ramírez AC, Real MD, Bravo A: Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Biochim Biophys Acta 2004, 1660:99-105.
- [52]Wu SJ, Koller CN, Miller DL, Bauer LS, Dean DH: Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEES Lett 2000, 473:227-232.