Biotechnology for Biofuels | |
Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina | |
Chloé Bennati-Granier1  Sona Garajova3  Charlotte Champion1  Sacha Grisel1  Mireille Haon1  Simeng Zhou1  Mathieu Fanuel2  David Ropartz2  Hélène Rogniaux2  Isabelle Gimbert1  Eric Record1  Jean-Guy Berrin1  | |
[1] Polytech Marseille, Aix Marseille Université, Marseille, F-13288, France | |
[2] INRA, Plateforme BIBS, Unité de Recherche Biopolymères, Interactions, Assemblages, Nantes, 44316, France | |
[3] Institute of Chemistry, Slovak Academy of Sciences, Bratislava, 84538, Slovakia | |
关键词: Biorefinery; Biomass; Lignocellulose; Oxidative cleavage; Hemicellulose; Cellulose; Oxidized cello-oligosaccharides; Cellobiose dehydrogenase; LPMO; AA9; | |
Others : 1219151 DOI : 10.1186/s13068-015-0274-3 |
|
received in 2015-02-16, accepted in 2015-06-12, 发布年份 2015 | |
【 摘 要 】
Background
The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood.
Results
In this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates. Their activity was assayed on cellulose in synergy with the cellobiose dehydrogenase from the same organism. We showed that the total release of oxidized oligosaccharides from cellulose was higher for PaLPMO9A, PaLPMO9E, and PaLPMO9H that harbored a carbohydrate-binding module from the family CBM1. Investigation of their regioselective mode of action revealed that PaLPMO9A and PaLPMO9H oxidatively cleaved at both C1 and C4 positions while PaLPMO9E released only C1-oxidized products. Rapid cleavage of cellulose was observed using PaLPMO9H that was the most versatile in terms of substrate specificity as it also displayed activity on cello-oligosaccharides and β-(1,4)-linked hemicellulose polysaccharides (e.g., xyloglucan, glucomannan).
Conclusions
This study provides insights into the mode of cleavage and substrate specificities of fungal AA9 LPMOs that will facilitate their application for the development of future biorefineries.
【 授权许可】
2015 Bennati-Granier et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150715081534800.pdf | 3584KB | download | |
Fig. 6. | 83KB | Image | download |
Fig. 5. | 57KB | Image | download |
Fig. 4. | 107KB | Image | download |
Fig. 3. | 63KB | Image | download |
Fig. 2. | 49KB | Image | download |
Fig. 1. | 65KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007, 315:804-7.
- [2]Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, et al.: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010, 330:219-22.
- [3]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010, 49:3305-16.
- [4]Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, et al.: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One. 2011., 6Article ID e27807
- [5]Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD: Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011, 77:7007-15.
- [6]Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011, 6:1399-406.
- [7]Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS, et al.: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011, 108:15079-84.
- [8]Beeson WT, Phillips CM, Cate JHD, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2012, 134:890-2.
- [9]Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, et al.: Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014, 111:6287-92.
- [10]Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA: A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014, 111:13822-7.
- [11]Lo Leggio L, Simmons TJ, Poulsen J-CN, Frandsen KEH, Hemsworth GR, Stringer MA, et al.: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015, 6:5961.
- [12]Van Vu V, Beeson WT, Phillips CM, Cate JHD, Marletta MA: Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014, 136:562-5.
- [13]Morgenstern I, Powlowski J, Tsang A: Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genom. 2014, 13:471-81.
- [14]Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, et al.: Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol. 2013, 79:488-96.
- [15]Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42:1-6.
- [16]Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013, 6:41. BioMed Central Full Text
- [17]Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, et al.: Cleavage of cellulose by a CBM33 protein. Protein Sci. 2011, 20:1479-83.
- [18]Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, et al.: The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc. 2013, 135:6069-77.
- [19]Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AKG, Harreither W, et al.: Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012, 78:6161-71.
- [20]Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, et al.: Cellobiose dehydrogenase - a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci. 2006, 7:255-80.
- [21]Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, et al.: The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 2008, 9:R77. BioMed Central Full Text
- [22]Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, et al.: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics. 2012, 13:57. BioMed Central Full Text
- [23]Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ: Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Appl Microbiol Biotechnol. 2012, 93:2075-89.
- [24]Fernandez-fueyo E, Ruiz-dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Kües U, et al.: Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci. 2012, 109:5458-63.
- [25]O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al.: Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012, 44:1060-5.
- [26]Poidevin L, Berrin JG, Bennati-Granier C, Levasseur A, Herpoël-Gimbert I, Chevret D, et al.: Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Bioresour Technol. 2014, 98:7457-69.
- [27]Navarro D, Rosso M-N, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, et al.: Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Biotechnol Biofuels. 2014, 7:143. BioMed Central Full Text
- [28]Turbe-Doan A, Arfi Y, Record E, Estrada-Alvarado I, Levasseur A: Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol. 2013, 97:4873-85.
- [29]Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PMM, et al.: A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microb Cell Fact. 2011, 10:103. BioMed Central Full Text
- [30]Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, et al.: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014, 289:2632-42.
- [31]Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R: Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels. 2012, 5:79. BioMed Central Full Text
- [32]Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, et al.: Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A. 2013, 1271:144-52.
- [33]Saloheimo M, Nakari-SetaLa T, Tenkanen M, Penttila M: cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem. 1997, 249:584-91.
- [34]Karlsson J, Saloheimo M, Siika-aho M, Tenkanen M, Penttilä M, Tjerneld F: Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem. 2001, 268:6498-507.
- [35]Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, et al.: Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014, 111:8446-51.
- [36]Hemsworth GR, Davies GJ, Walton PH: Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol. 2013, 23:660-8.
- [37]Pham TA, Berrin JG, Record E, To KA, Sigoillot JC: Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol. 2010, 148:163-70.
- [38]Ravalason H, Herpoël-Gimbert I, Record E, Bertaud F, Grisel S, de Weert S, et al.: Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol. 2009, 142:220-6.
- [39]Bolam DN, Ciruela A, Mcqueen-mason S, Simpson P, Williamson MP, Rixon JE, et al.: Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 1998, 331:775-81.
- [40]Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, et al.: Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 1988, 170:575-81.
- [41]Reinikainen T, Teleman O, Teeri TT: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins. 1995, 22:392-403.
- [42]Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA: Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A. 2014, 111:9109-14.
- [43]Busk PK, Lange L: Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl Environ Microbiol. 2013, 79:3380-91.
- [44]Li X, Beeson WT IV, Phillips CM, Marletta MA, Cate JHD: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure. 2012, 20:1051-61.
- [45]Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG: Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol. 2011, 77:237-46.
- [46]Bey M, Berrin JG, Poidevin L, Sigoillot JC: Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microb Cell Fact. 2011, 10:113. BioMed Central Full Text
- [47]Wood TM: Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzym. 1988, 160:19-25.
- [48]Ropartz D, Bodet P-E, Przybylski C, Gonnet F, Daniel R, Fer M, et al.: Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Commun Mass Spectrom. 2011, 25:2059-70.
- [49]Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, et al.: An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant. 1993, 89:1-3.