期刊论文详细信息
Biology Direct
Test on existence of histology subtype-specific prognostic signatures among early stage lung adenocarcinoma and squamous cell carcinoma patients using a Cox-model based filter
Suyan Tian1  Chi Wang3  Ming-Wen An2 
[1] Division of Clinical Epidemiology, First Hospital of Jilin University, 71Xinmin Street, Changchun 130021, Jilin, China
[2] Department of Mathematics, Vassar College, Poughkeepsie 12604, NY, USA
[3] Department of Biostatistics and Markey Cancer Center, University of Kentucky, 800 Rose St., Lexington 40536, KY, USA
关键词: Feature selection algorithm;    Gene expression barcode;    Histology-subtype specific;    Prognosis;    Cox model;    Squamous cell carcinoma (SCC);    Adenocarcinoma (AC);    Non-small cell lung cancer (NSCLC);   
Others  :  1180726
DOI  :  10.1186/s13062-015-0051-z
 received in 2014-08-12, accepted in 2015-03-24,  发布年份 2015
【 摘 要 】

Background

Non-small cell lung cancer (NSCLC) is the predominant histological type of lung cancer, accounting for up to 85% of cases. Disease stage is commonly used to determine adjuvant treatment eligibility of NSCLC patients, however, it is an imprecise predictor of the prognosis of an individual patient. Currently, many researchers resort to microarray technology for identifying relevant genetic prognostic markers, with particular attention on trimming or extending a Cox regression model.

Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are two major histology subtypes of NSCLC. It has been demonstrated that fundamental differences exist in their underlying mechanisms, which motivated us to postulate the existence of specific genes related to the prognosis of each histology subtype.

Results

In this article, we propose a simple filter feature selection algorithm with a Cox regression model as the base. Applying this method to real-world microarray data identifies a histology-specific prognostic gene signature. Furthermore, the resulting 32-gene (32/12 for AC/SCC) prognostic signature for early-stage AC and SCC samples has superior predictive ability relative to two relevant prognostic signatures, and has comparable performance with signatures obtained by applying two state-of-the art algorithms separately to AC and SCC samples.

Conclusions

Our proposal is conceptually simple, and straightforward to implement. Furthermore, it can be easily adapted and applied to a range of other research settings.

Reviewers

This article was reviewed by Leonid Hanin (nominated by Dr. Lev Klebanov), Limsoon Wong and Jun Yu.

【 授权许可】

   
2015 Tian et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 1. 42KB Image download
Figure 1. 88KB Image download
Figure 4. 51KB Image download
Figure 3. 36KB Image download
Figure 2. 51KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 1.

Figure 1.

【 参考文献 】
  • [1]Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES, et al.: Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 2005, 128:452-62.
  • [2]Siegel R, Ward E, Brawley O, Jemal A: Cancer statistics, 2011. CA Cancer J Clin 2011, 61:212-36.
  • [3]Lu Y, Lemon W, Liu P-Y, Yi Y, Morrison C, Yang P, et al.: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006, 3:e467.
  • [4]Visbal AL, Leighl NB, Feld R, Shepherd FA: Adjuvant chemotherapy for early-stage non-small cell lung cancer. Chest 2005, 128:2933-43.
  • [5]Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, et al.: Vinorelbine plus cisplatin vs observation in resected non-small-cell lung cancer. N Engl J Med 2005, 352:2589-97.
  • [6]Saeys Y, Inza I, Larrañaga P: A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-17.
  • [7]Cox DR: Regression models and life-tables. J R Stat Soc B 1972, 34:187-220.
  • [8]Gui J, Li H: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005, 21:3001-8.
  • [9]Sohn I, Kim J, Jung S-H, Park C: Gradient lasso for Cox proportional hazards model. Bioinformatics 2009, 25:1775-81.
  • [10]Kikuchi T, Daigo Y, Katagiri T, Tsunoda T, Okada K, Kakiuchi S, et al.: Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene 2003, 22:2192-205.
  • [11]Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, et al.: Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer 2011, 129:355-64.
  • [12]Tian S, Suárez-fariñas M: Hierarchical-TGDR: Combining biological hierarchy with a regularization method for multi-class classification of lung cancer samples via high-throughput gene-expression data. Syst Biomed 2013, 1:93-102.
  • [13]Ben-hamo R, Boue S, Martin F, Talikka M, Efroni S: Classification of lung adenocarcinoma and squamous cell carcinoma samples based on their gene expression profile in the sbv IMPROVER Diagnostic Signature Challenge. Syst Biomed. 2013, 1:83-92.
  • [14]Mramor M, Leban G, Demsar J, Zupan B: Visualization-based cancer microarray data classification analysis. Bioinformatics 2007, 23:2147-54.
  • [15]Tarca AL, Than NG, Romero R: Methodological approach from the Best Overall Team in the IMPROVER Diagnostic Signature Challenge. Syst Biomed 2013, 1:1-11.
  • [16]Zilliox MJ, Irizarry RA: A gene expression bar code for microarray data. Nat Methods 2007, 4:911-3.
  • [17]McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA: The gene expression barcode: Leveraging public data repositories to begin cataloging the human and murine transcriptomes. Nucleic Acids Res 2011, 39:D1011-5.
  • [18]Der SD, Sykes J, Pintilie M, Zhu C, Strumpf D, Liu N, et al.: Validation of a histology-independent prognostic gene including stage IA patients. J Thorac Oncol 2014, 9:59-64.
  • [19]Zhu C-Q, Ding K, Strumpf D, Weir B a, Meyerson M, Pennell N, et al.: Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol 2010, 28:4417-24.
  • [20]Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004, 99:909-17.
  • [21]Smyth G: Limma: linear models for microarray data. In Comput Biol Solut using R. Edited by Gentleman R, Carey V, Dudoit S, Irizarry WH R. Springer, New York; 2005:397-420.
  • [22]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57:289-300.
  • [23]Shao W, Wang D, He J: The role of gene expression profiling in early-stage non-small cell lung cancer. J Thorac Dis 2010, 2:89-99.
  • [24]Guo N, Wan Y, Bose S: A novel network model identified a 13-gene lung cancer prognostic signature. Int J 2011, 4:19-39.
  • [25]Ein-Dor L, Kela I, Getz G, Givol D, Domany E: Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005, 21:171-8.
  • [26]Tan PK, Downey TJ, Spitznagel EL, Xu P, Fu D, Dimitrov DS, et al.: Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 2003, 31:5676-84.
  • [27]Manoli T, Gretz N, Gröne H-J, Kenzelmann M, Eils R, Brors B: Group testing for pathway analysis improves comparability of different microarray datasets. Bioinformatics 2006, 22:2500-6.
  • [28]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41:D808-15.
  • [29]Law CW, Chen Y, Shi W, Smyth GK: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014, 15:R29. BioMed Central Full Text
  • [30]Park MY, Hastie T: L1-regularization path algorithm for generalized linear models. J R Stat Soc Ser B Methodol 2007, 69:659-77.
  • [31]Bender RAT, Blettner M: Generating survival times to simulate Cox proportional hazards models. Stat Med 2005, 24:1713-23.
  • [32]Chen M, Xiao J, Zhang Z, Liu J, Wu J, et al.: Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis. PLoS ONE 2013, 8(1):e54082.
  • [33]Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Kumar Dey K, et al.: Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics 2013, 29:2892-9.
  • [34]Haury AC, Gestraud P, Vert JP: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 2011, 6:1-12.
  文献评价指标  
  下载次数:30次 浏览次数:26次